Deep Learning-Based Frameworks for Semantic Segmentation of Road Scenes

被引:8
|
作者
Alokasi, Haneen [1 ]
Ahmad, Muhammad Bilal [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, Alahsa 31982, Saudi Arabia
关键词
deep learning; semantic segmentation; road scenes; OBJECT CLASSES; NETWORK; VISION;
D O I
10.3390/electronics11121884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation using machine learning and computer vision techniques is one of the most popular topics in autonomous driving-related research. With the revolution of deep learning, the need for more efficient and accurate segmentation systems has increased. This paper presents a detailed review of deep learning-based frameworks used for semantic segmentation of road scenes, highlighting their architectures and tasks. It also discusses well-known standard datasets that evaluate semantic segmentation systems in addition to new datasets in the field. To overcome a lack of enough data required for the training process, data augmentation techniques and their experimental results are reviewed. Moreover, domain adaptation methods that have been deployed to transfer knowledge between different domains in order to reduce the domain gap are presented. Finally, this paper provides quantitative analysis and performance evaluation and discusses the results of different frameworks on the reviewed datasets and highlights future research directions in the field of semantic segmentation using deep learning.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Failure Detection for Semantic Segmentation on Road Scenes Using Deep Learning
    Song, Junho
    Ahn, Woojin
    Park, Sangkyoo
    Lim, Myotaeg
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 22
  • [2] Exploration of Deep Learning-based Multimodal Fusion for Semantic Road Scene Segmentation
    Zhang, Yifei
    Morel, Olivier
    Blanchon, Marc
    Seulin, Ralph
    Rastgoo, Mojdeh
    Sidibe, Desire
    [J]. PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 336 - 343
  • [3] A Deep Learning-Based Benchmarking Framework for Lane Segmentation in the Complex and Dynamic Road Scenes
    Yousri, Retaj
    Elattar, Mustafa A.
    Darweesh, M. Saeed
    [J]. IEEE ACCESS, 2021, 9 : 117565 - 117580
  • [4] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [5] Deep learning-based semantic segmentation for morphological fractography
    Tang, Keke
    Zhang, Peng
    Zhao, Yindun
    Zhong, Zheng
    [J]. ENGINEERING FRACTURE MECHANICS, 2024, 303
  • [6] A Deep Learning-Based Image Semantic Segmentation Algorithm
    Shen, Chaoqun
    Sun, Zhongliang
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (01): : 98 - 108
  • [7] Deep Learning-Based Semantic Segmentation Methods for Pavement Cracks
    Zhang, Yu
    Gao, Xin
    Zhang, Hanzhong
    [J]. INFORMATION, 2023, 14 (03)
  • [8] A Review of Deep Learning-Based Semantic Segmentation for Point Cloud
    Zhang, Jiaying
    Zhao, Xiaoli
    Chen, Zheng
    Lu, Zhejun
    [J]. IEEE ACCESS, 2019, 7 : 179118 - 179133
  • [9] Deep Learning-based Semantic Segmentation for Crack Detection on Marbles
    Akosman, Sahin Alp
    Oktem, Mert
    Moral, Ozge Taylan
    Kilic, Volkan
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [10] Deep learning-based framework for tumour detection and semantic segmentation
    Kot, Estera
    Krawczyk, Zuzanna
    Siwek, Krzysztof
    Krolicki, Leszek
    Czwarnowski, Piotr
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (03)