Discrete maximum principle for finite element parabolic models in higher dimensions

被引:2
|
作者
Farago, Istvan [1 ]
机构
[1] Eotvos Lorand Univ, Inst Math, H-1117 Budapest, Hungary
基金
美国国家科学基金会;
关键词
Reliable modelling; Qualitative properties; Finite element; Parabolic equation; Higher dimensions;
D O I
10.1016/j.matcom.2009.01.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When we construct continuous and/or discrete mathematical models in order to describe a real-life problem, these models should have various qualitative properties, which typically arise from some basic principles of the modelled phenomena. In this paper we investigate this question for the numerical solution of initial-boundary problems for the parabolic problems in higher dimensions, with the first boundary condition, using the linear finite elements. We give the conditions for the geometry of the mesh and for the choice of the discretization parameters, i.e., for the step sizes under which the discrete qualitative properties hold. For the special regular uniform simplicial mesh we define the conditions for the discretization step-sizes. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1601 / 1611
页数:11
相关论文
共 50 条
  • [1] Discrete Maximum Principle for Finite Element Parabolic Operators
    Mincsovics, Miklos E.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 604 - 612
  • [2] Discrete maximum principle for Galerkin finite element solutions to parabolic problems on rectangular meshes
    Faragó, I
    Horváth, R
    Korotov, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 298 - 307
  • [3] Discrete maximum principle for parabolic problems solved by prismatic finite elements
    Vejchodsky, Tomas
    Korotov, Sergey
    Hannukainen, Antti
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (08) : 1758 - 1770
  • [4] Failure of the discrete maximum principle for an elliptic finite element problem
    Draganescu, A
    Dupont, TF
    Scott, LR
    MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 1 - 23
  • [5] WEAK DISCRETE MAXIMUM PRINCIPLE OF FINITE ELEMENT METHODS IN CONVEX POLYHEDRA
    Leykekhman, Dmitriy
    Li, Buyang
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 1 - 18
  • [6] Weak maximum principle of finite element methods for parabolic equations in polygonal domains
    Genming Bai
    Dmitriy Leykekhman
    Buyang Li
    Numerische Mathematik, 2025, 157 (1) : 97 - 142
  • [7] ON THE KRYLOV MAXIMUM PRINCIPLE FOR DISCRETE PARABOLIC SCHEMES
    Kuo, Hung-Ju
    Trudinger, Neil S.
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (04): : 437 - 450
  • [8] Maximum norm analysis of completely discrete finite element methods for parabolic problems
    Palencia, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) : 1654 - 1668
  • [9] WEAK DISCRETE MAXIMUM PRINCIPLE OF ISOPARAMETRIC FINITE ELEMENT METHODS IN CURVILINEAR POLYHEDRA
    Li, Buyang
    Qiu, Weifeng
    Xie, Yupei
    Yu, Wenshan
    MATHEMATICS OF COMPUTATION, 2023, : 1 - 34
  • [10] THE DISCRETE MAXIMUM PRINCIPLE IN FINITE-ELEMENT THERMAL-RADIATION ANALYSIS
    LOBO, M
    EMERY, AF
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1993, 24 (02) : 209 - 227