Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters

被引:146
|
作者
Krabbenhoeft, A. [1 ]
Eisenhauer, A. [1 ]
Boehm, F. [1 ]
Vollstaedt, H. [1 ]
Fietzke, J. [1 ]
Liebetrau, V. [1 ]
Augustin, N. [1 ]
Peucker-Ehrenbrink, B. [3 ]
Mueller, M. N. [1 ]
Horn, C. [1 ]
Hansen, B. T. [2 ]
Nolte, N. [2 ]
Wallmann, K. [1 ]
机构
[1] IFM GEOMAR, Leibniz Inst Meereswissensch, D-24148 Kiel, Germany
[2] Univ Gottingen, Geowissensch Zentrum, Abt Isotopengeol, D-37077 Gottingen, Germany
[3] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
关键词
SEA-LEVEL RECORD; CALCIUM CYCLE; SR; SEAWATER; SR/CA; DELTA-CA-44/40; CORALS; SEDIMENTS; OCEANS; SHELF;
D O I
10.1016/j.gca.2010.04.009
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present strontium (Sr) isotope ratios that, unlike traditional Sr-87/Sr-86 data, are not normalized to a fixed Sr-88/Sr-86 ratio of 8.375209 (defined as delta Sr-88/86 = 0 relative to NIST SRM 987). Instead, we correct for isotope fractionation during mass spectrometry with a Sr-87-Sr-84 double spike. This technique yields two independent ratios for Sr-87/Sr-86 and Sr-88/Sr-86 that are reported as (Sr-87/Sr-86*) and (delta Sr-88/86), respectively. The difference between the traditional radiogenic (Sr-87/Sr-86 normalized to Sr-88/Sr-86 = 8.375209) and the new Sr-87/Sr-86* values reflect natural mass-dependent isotope fractionation. In order to constrain glacial/interglacial changes in the marine Sr budget we compare the isotope composition of modern seawater ((Sr-87/Sr-86*, delta Sr-88/86)(Seawater)) and modern marine biogenic carbonates ((Sr-87/Sr-86*, delta(88)/Sr-86)(Carbonates)) with the corresponding values of river waters ((Sr-87/Sr-86*, delta Sr-88/86)(River)) and hydrothermal solutions ((Sr-87/Sr-86*, delta(88)/Sr-86)(HydEnd)) in a triple isotope plot. The measured (Sr-87/Sr-86*, delta(88)/Sr-86)(River)). values of selected rivers that together account for similar to 18% of the global Sr discharge yield a Sr flux-weighted mean of (0.7114(8), 0.315(8)parts per thousand). The average ((Sr-87/Sr-86*, delta Sr-88/86)(HydEnd) values for hydrothermal solutions from the Atlantic Ocean are (0.7045(5), 0.27(3)parts per thousand). In contrast, the (Sr-87/Sr-86*, delta Sr-88/86)(Carbonates) values representing the marine Sr output are (0.70926(2), 0.21(2)parts per thousand). We estimate the modern Sr isotope composition of the sources at (0.7106(8), 0.310(8)parts per thousand). The difference between the estimated (Sr-87/Sr-86*, delta Sr-88/86) and (Sr-87/Sr-86*, delta(88)/Sr-86)(output) values reflects isotope disequilibrium with respect to Sr inputs and outputs. In contrast to the modern ocean, isotope equilibrium between inputs and outputs during the last glacial maximum (10-30 ka before present) can be explained by invoking three times higher Sr inputs from a uniquely "glacial" source: weathering of shelf carbonates exposed at low sea levels. Our data are also consistent with the "weathering peak" hypothesis that invokes enhanced Sr inputs resulting from weathering of postglacial exposure of abundant fine-grained material. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4097 / 4109
页数:13
相关论文
共 50 条
  • [1] Reassessing the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs
    Pearce, Christopher R.
    Parkinson, Ian J.
    Gaillardet, Jerome
    Charlier, Bruce L. A.
    Mokadem, Fatima
    Burton, Kevin W.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 157 : 125 - 146
  • [2] Characterising the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) isotopic composition of strontium in rainwater
    Pearce, Christopher R.
    Parkinson, Ian J.
    Gaillardet, Jerome
    Chetelat, Benjamin
    Burton, Kevin W.
    [J]. CHEMICAL GEOLOGY, 2015, 409 : 54 - 60
  • [3] Ocean Sr-budget from paired δ88/86Sr and 87Sr/86Sr*-ratios
    Krabbenhoeft, A.
    Eisenhauer, A.
    Vollstaedt, H.
    Augustin, N.
    Fietzke, J.
    Liebetrau, V.
    Peucker-Ehrenbrink, B.
    Nolte, N.
    Hansen, B. T.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A694 - A694
  • [4] Strontium Isotope Characteristics (δ88/86Sr, 87Sr/86Sr) of Arima-Type Brines Originated From Slab-Fluids
    Kani, T.
    Misawa, K.
    Morikawa, N.
    Kazahaya, K.
    Kusuhara, F.
    Yoneda, S.
    Terakado, Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (08)
  • [5] Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike
    Krabbenhoeft, Andre
    Fietzke, Jan
    Eisenhauer, Anton
    Liebetrau, Volker
    Boehm, Florian
    Vollstaedt, Hauke
    [J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2009, 24 (09) : 1267 - 1271
  • [6] Estimating the distribution of strontium isotope ratios (87Sr/86Sr) in the Precambrian of Finland
    Kaislaniemi, Lars
    [J]. BULLETIN OF THE GEOLOGICAL SOCIETY OF FINLAND, 2011, 83 : 95 - 113
  • [7] Weathering processes, catchment geology and river management impacts on radiogenic (87Sr/86Sr) and stable (δ88/86Sr) strontium isotope compositions of Canadian boreal rivers
    Stevenson, Ross
    Pearce, Christopher R.
    Rosa, Eric
    Helie, Jean-Francois
    Hillaire-Marcel, Claude
    [J]. CHEMICAL GEOLOGY, 2018, 486 : 50 - 60
  • [8] Precisemeasurementofstable(δ88/86Sr)andradiogenic(87Sr/86Sr)strontiumisotoperatiosingeologicalstandardreferencematerialsusingMC-ICP-MS
    MA JinLong
    WEI GangJian
    LIU Ying
    REN ZhongYuan
    XU YiGang
    YANG YongHong
    [J]. Chinese Science Bulletin., 2013, 58 (25) - 3118
  • [9] Strontium isotope (87Sr/86Sr) data from archaeological sites in Utah, USA
    Lambert, Spencer F. X.
    [J]. DATA IN BRIEF, 2019, 27
  • [10] Strontium (87Sr/86Sr) mapping: A critical review of methods and approaches
    Holt, Emily
    Evans, Jane A.
    Madgwick, Richard
    [J]. EARTH-SCIENCE REVIEWS, 2021, 216