Holomorphic foliations of codimension one transverse to polydiscs

被引:0
|
作者
Ito, T [1 ]
Scárdua, B
机构
[1] Ryukoku Univ, Dept Nat Sci, Fushimi Ku, Kyoto 6128577, Japan
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is about the geometry of holomorphic foliations. We prove that if a codimension one holomorphic foliation with singularities defined in a neighborhood of the closed polydisc (Delta(n)) over bar in C-n, ngreater than or equal to2 is transverse to the boundary partial derivative(Delta(n)) over bar in the sense that is a natural generalization of [ 2], then the foliation is the pull-back of a linear logarithmic foliation of hyperbolic type. We also give a geometric characterization of hyperbolic linear logarithmic foliations.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [1] EXCEPTIONAL SINGULARITIES OF CODIMENSION ONE HOLOMORPHIC FOLIATIONS
    Brunella, Marco
    Perrone, Carlo
    [J]. PUBLICACIONS MATEMATIQUES, 2011, 55 (02) : 295 - 312
  • [2] Rational endomorphisms of codimension one holomorphic foliations
    Lo Bianco, Federico
    Pereira, Jorge Vitorio
    Rousseau, Erwan
    Touzet, Frederic
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (789): : 43 - 101
  • [3] Codimension one holomorphic foliations with trivial canonical class
    Touzet, Frederic
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2008, 41 (04): : 655 - 668
  • [4] Degrees of spaces of holomorphic foliations of codimension one in Pn
    Leite, Daniel
    Vainsencher, Israel
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (11) : 2791 - 2804
  • [5] A NON-EXISTENCE THEOREM FOR MORSE TYPE HOLOMORPHIC FOLIATIONS OF CODIMENSION ONE TRANSVERSE TO SPHERES
    Ito, Toshikazu
    Scardua, Bruno
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (04) : 435 - 452
  • [6] CODIMENSION TWO HOLOMORPHIC FOLIATIONS
    Cerveau, D.
    Lins Neto, A.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (03) : 385 - 416
  • [7] On The Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle
    Brunella, Marco
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3101 - 3113
  • [8] Singularities of Holomorphic Codimension One Foliations of the Complex Projective Plane
    Dominique Cerveau
    Julie Déserti
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [9] COMPACT LEAVES OF CODIMENSION ONE HOLOMORPHIC FOLIATIONS ON PROJECTIVE MANIFOLDS
    Claudon, Benoit
    Loray, Frank
    Pereira, Jorge Vitorio
    Touzet, Frederic
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (06): : 1457 - 1506
  • [10] The Noether–Fano inequalities for codimension one singular holomorphic foliations
    Luís Gustavo Mendes
    [J]. Geometriae Dedicata, 2009, 139 : 33 - 47