Electrochemical Activation of Graphene at Low Temperature: The Synthesis of Three-Dimensional Nanoarchitectures for High Performance Supercapacitors and Capacitive Deionization

被引:46
|
作者
Zoromba, Mohamed Shafick [1 ,3 ]
Abdel-Aziz, Mohamed Helmy [1 ]
Bassyouni, Mohamed [1 ,4 ,5 ]
Gutub, Saud [2 ]
Demko, Denisa [6 ]
Abdelkader, Amr [6 ,7 ]
机构
[1] King Abdulaziz Univ, Chem & Mat Engn Dept, Rabigh 21911, Saudi Arabia
[2] King Abdulaziz Univ, Civil Engn Dept, Rabigh 21911, Saudi Arabia
[3] Port Said Univ, Fac Sci, Dept Chem, Port Said, Egypt
[4] Univ Alexandria, Fac Engn, Dept Chem Engn, Alexandria, Egypt
[5] Higher Technol Inst, Dept Chem Engn, Tenth Of Ramadan City, Egypt
[6] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[7] Univ Manchester, NGI, Booth St East, Manchester M13 9QS, Lancs, England
来源
关键词
Molten salts; Desalination; Porous electrodes; Sponge-templated; Electrosorption; Ultracapacitor; CALCIOTHERMIC REDUCTION; WATER DESALINATION; CHARGE EFFICIENCY; CARBON COMPOSITES; ENERGY-STORAGE; KOH ACTIVATION; ELECTRODES; OXIDE; SHEETS; NANOTUBES;
D O I
10.1021/acssuschemeng.6b02869
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An electrochemical technique is developed to activate graphene oxide (GO) at relatively low temperature and assemble it into porous electrodes. The activation process is carried out in molten KOH by switching the polarity between 2 symmetrical GO electrodes. The electrochemically activated graphene (ECAG) showed a specific surface area as high as 2170 m(2) g(-1) and nanometer-sized pore created at a temperature as low as 450 degrees C. The ECAG electrode shows a significant enhancement in the electrochemical activity and thus improved electrochemical performance when being used as electrodes in supercapacitors and capacitive deionization (CDI) cells. A specific capacitance of 275 F g(-1) is obtained in 6 M KOH electrolyte, and 189 F g(-1) in 1 M NaCl electrolyte, which maintains 95% after 5000 cycles. The desalination capacity of the electrodes was evaluated by a batch mode electrosorption experiment. The ECAG electrode was able to remove 14.25 mg of salts per gram of the active materials and satisfy a high adsorption rate of 2.01 mg CI min(-1). The low energy consumption of the CDI system is demonstrated by its high charge efficiency, which is estimated to be 0.83.
引用
收藏
页码:4573 / 4581
页数:9
相关论文
共 50 条
  • [1] Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization
    Wang, Hui
    Zhang, Dengsong
    Yan, Tingting
    Wen, Xiaoru
    Zhang, Jianping
    Shi, Liyi
    Zhong, Qingdong
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) : 11778 - 11789
  • [2] Synthesis of Three-dimensional Graphene Electrodes and Their Applications in Capacitive Deionization
    Chen Chunyang
    Yu Fei
    Zhou Huiming
    Chen Junhong
    Ma Jie
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (12): : 2516 - 2522
  • [3] Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water
    Yin, Huajie
    Zhao, Shenlong
    Wan, Jiawei
    Tang, Hongjie
    Chang, Lin
    He, Liangcan
    Zhao, Huijun
    Gao, Yan
    Tang, Zhiyong
    ADVANCED MATERIALS, 2013, 25 (43) : 6270 - 6276
  • [4] Hierarchical N-doped holey three-dimensional reduced graphene oxide with high performance capacitive deionization
    Liu, Shi
    Li, Bingjian
    Zhou, Yinjie
    Xu, Xixi
    Yang, Rong
    Wang, Qiuze
    Li, Jinchun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 1996 - 2006
  • [5] Preparation of three-dimensional graphene foam for high performance supercapacitors
    Yunjie Ping
    Youning Gong
    Qiang Fu
    Chunxu Pan
    ProgressinNaturalScience:MaterialsInternational, 2017, 27 (02) : 177 - 181
  • [6] Functionalized three-dimensional graphene networks for high performance supercapacitors
    Wu, Xiaoliang
    Yang, Deren
    Wang, Caikun
    Jiang, Yuting
    Wei, Tong
    Fan, Zhuangjun
    CARBON, 2015, 92 : 26 - 30
  • [7] Preparation of three-dimensional graphene foam for high performance supercapacitors
    Ping, Yunjie
    Gong, Youning
    Fu, Qiang
    Pan, Chunxu
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2017, 27 (02) : 177 - 181
  • [8] Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores
    Wenhui Shi
    Haibo Li
    Xiehong Cao
    Zhi Yi Leong
    Jun Zhang
    Tupei Chen
    Hua Zhang
    Hui Ying Yang
    Scientific Reports, 6
  • [9] Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores
    Shi, Wenhui
    Li, Haibo
    Cao, Xiehong
    Leong, Zhi Yi
    Zhang, Jun
    Chen, Tupei
    Zhang, Hua
    Yang, Hui Ying
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Design of three-dimensional faradic electrode materials for high-performance capacitive deionization
    Wang, Hao
    Xu, Xingtao
    Gao, Xiaoyan
    Li, Yuquan
    Lu, Ting
    Pan, Likun
    COORDINATION CHEMISTRY REVIEWS, 2024, 510