An Efficient Algorithm for Finding Frequent Items in a Stream

被引:2
|
作者
Tu, Li [1 ]
Chen, Ling [2 ,3 ]
Zhang, Shan [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangyin Polytech Coll, Inst Informat Sci & Technol, Dept Comp Sci, Nanjing 210016, Jiangyin, Peoples R China
[2] Yangzhou Univ, Dep Comp Sci, Yangzhou, Jiangsu, Peoples R China
[3] Nanjing Univ, Natl Key Lab Novel Software Tech, Nanjing, Peoples R China
关键词
data stream; data mining; frequent items; fading factor;
D O I
10.1109/ISECS.2009.188
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Most of the existing algorithms for mining frequent items over data streams do not emphasis the importance of the more recent data items. We present an efficient algorithm where a fading factor lambda is used for computing frequency counts exceeding a user-specified threshold over data streams. Our algorithm lambda-Miner can detect epsilon-approximate frequent items of a data stream using O(epsilon(-1)) memory space and the processing time for each data item is O(1). Experimental results on several artificial data sets and real data sets show that lambda-Miner performs better than lambda-LC in terms with precision, memory requirement and time cost.
引用
收藏
页码:200 / +
页数:2
相关论文
共 50 条
  • [1] A Fast and Efficient Algorithm for Finding Frequent Items over Data Stream
    Chen, Ling
    Chen, Yixin
    Tu, Li
    [J]. JOURNAL OF COMPUTERS, 2012, 7 (07) : 1545 - 1554
  • [2] Memory efficient algorithm for mining recent frequent items in a stream
    Kolaczkowski, Piotr
    [J]. Rough Sets and Intelligent Systems Paradigms, Proceedings, 2007, 4585 : 485 - 494
  • [3] Finding frequent items over data stream
    Tu, Li
    Chen, Ling
    [J]. Journal of Computational Information Systems, 2010, 6 (12): : 4127 - 4134
  • [4] Finding frequent items in a turnstile data stream
    Hung, Regant Y. S.
    Lai, Kwok Fai
    Ting, Hing Fung
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 498 - 509
  • [5] An Extension of the Apriori Algorithm for Finding Frequent Items
    Karimtabar, Noorollah
    Fard, Mohammad Javad Shayegan
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2020, : 330 - 334
  • [6] An Efficient Hardware Architecture for Finding Frequent Items in Data Streams
    Ebrahim, Ali
    Khlaifat, Jalal
    [J]. 2020 IEEE 38TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2020), 2020, : 113 - 119
  • [7] A More Accurate Space Saving Algorithm for Finding the Frequent Items
    Zhou Jun
    Chen Ming
    Xiong Huan
    [J]. 2010 2ND INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS PROCEEDINGS (DBTA), 2010,
  • [8] FINDING FREQUENT ITEMS: NOVEL METHOD FOR IMPROVING APRIORI ALGORITHM
    Karimtabar, Noorollah
    Fard, Mohammad Javad Shayegan
    [J]. COMPUTER SCIENCE-AGH, 2022, 23 (02): : 161 - 177
  • [9] An Algorithm for Finding Frequent Patterns in Social Media Stream
    Ha, Suwook
    Lee, Yong Mi
    Nam, Kwang Woo
    Ryu, Kenn Ho
    [J]. 2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, : 618 - 623
  • [10] Finding frequent items in parallel
    Cafaro, Massimo
    Tempesta, Piergiulio
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (15): : 1774 - 1788