On the free boundary problem for stochastic hyperbolic heat systems

被引:0
|
作者
Ishikawa, M [1 ]
机构
[1] Yamaguchi Univ, Dept Comp Sci & Syst Engn, Ube, Yamaguchi 755, Japan
关键词
stochastic systems; free boundary; Stefan problem; hyperbolic heat equation; revised Fourier's law; Gelfand triple; variational form; variational inequality; Galerkin's method;
D O I
10.1016/S0362-546X(97)00138-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:2273 / 2278
页数:6
相关论文
共 50 条
  • [1] On the free boundary problem for stochastic hyperbolic heat systems
    Ishikawa, Masaaki
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (04): : 2273 - 2278
  • [2] A HYPERBOLIC FREE BOUNDARY PROBLEM
    HILL, CD
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 31 (01) : 117 - &
  • [3] HEAT PROBLEM WITH FREE BOUNDARY
    SHISHKIN, GI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 197 (06): : 1276 - &
  • [4] Nonlinear boundary control problem of hyperbolic systems
    Bouhamed, A.
    El Kabouss, A.
    Bouzahir, H.
    [J]. JOURNAL OF CONTROL AND DECISION, 2024, 11 (01) : 73 - 83
  • [5] Boundary Stabilization of Complex Coupled Hyperbolic Stochastic Systems
    Gao, Yu
    Jia, Peining
    Wu, Kai-Ning
    Kang, Mingxin
    [J]. ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 382 - 389
  • [6] MOVING BOUNDARY PROBLEM IN HYPERBOLIC HEAT CONDUCTION.
    De Socio, L.M.
    Misici, L.
    [J]. Revue roumaine des sciences techniques. Serie de mecanique appliquee, 1987, 32 (02): : 177 - 187
  • [7] Asymptotic behavior of solutions of a hyperbolic free boundary problem
    Nakane, K
    Shinohara, T
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 289 - 298
  • [8] Hyperbolic Solutions to Bernoulli's Free Boundary Problem
    Henrot, Antoine
    Onodera, Michiaki
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 761 - 784
  • [9] Hyperbolic Solutions to Bernoulli’s Free Boundary Problem
    Antoine Henrot
    Michiaki Onodera
    [J]. Archive for Rational Mechanics and Analysis, 2021, 240 : 761 - 784
  • [10] A variational approach to a constrained hyperbolic free boundary problem
    Ginder, Elliott
    Svadlenka, Karel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1527 - E1537