On the Accuracy-Convergence Tradeoff in Sigmoid Fuzzy Cognitive Maps

被引:17
|
作者
Napoles, Gonzalo [1 ]
Concepcion, Leonardo [2 ]
Falcon, Rafael [3 ]
Bello, Rafael [2 ]
Vanhoof, Koen [1 ]
机构
[1] Hasselt Univ, Fac Business Econ, B-3500 Hasselt, Belgium
[2] Cent Univ Las Villas, Dept Comp Sci, Santa Clara 54830, Cuba
[3] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
关键词
Convergence; fuzzy cognitive maps (FCMs); learning; NEURAL-NETWORKS; STABILITY;
D O I
10.1109/TFUZZ.2017.2768327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, a learning procedure to improve the overall convergence of sigmoid fuzzy cognitive maps used in pattern classification was proposed. The algorithm estimates the slope of each sigmoid neuron while preserving the causal weights. This paper proposes a more realistic error function for this algorithm, which is based on 1) the dissimilarity between two consecutive responses, and 2) the dissimilarity between the current output and the expected one. As a second contribution. we introduce sufficient conditions to arrive at stability features. These conditions allow assessing the accuracy-convergence tradeoff attached to the proposed learning procedure.
引用
收藏
页码:2479 / 2484
页数:6
相关论文
共 50 条
  • [1] On the convergence of sigmoid Fuzzy Cognitive Maps
    Napoles, Gonzalo
    Papageorgiou, Elpiniki
    Bello, Rafael
    Vanhoof, Koen
    [J]. INFORMATION SCIENCES, 2016, 349 : 154 - 171
  • [2] How to improve the convergence on sigmoid Fuzzy Cognitive Maps?
    Napoles, Gonzalo
    Bello, Rafael
    Vanhoof, Koen
    [J]. INTELLIGENT DATA ANALYSIS, 2014, 18 : S77 - S88
  • [3] On the Convergence of Fuzzy Grey Cognitive Maps
    Harmati, Istvan A.
    Koczy, Laszlo T.
    [J]. INFORMATION TECHNOLOGY, SYSTEMS RESEARCH, AND COMPUTATIONAL PHYSICS, 2020, 945 : 74 - 84
  • [4] New Concerns on Fuzzy Cognitive Maps Equation and Sigmoid Function
    Eleni, Vergini
    Petros, Groumpos
    [J]. 2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2017, : 1113 - 1118
  • [5] On the Convergence of Input-Output Fuzzy Cognitive Maps
    Harmati, Istvan A.
    Koczy, Laszlo T.
    [J]. ROUGH SETS, IJCRS 2020, 2020, 12179 : 449 - 461
  • [6] On the Existence and Uniqueness of Fixed Points of Fuzzy Set Valued Sigmoid Fuzzy Cognitive Maps
    Harmati, Istvan A.
    Koczy, Laszlo T.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [7] Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps
    Tsadiras, Athanasios K.
    [J]. INFORMATION SCIENCES, 2008, 178 (20) : 3880 - 3894
  • [8] Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps
    Themistoklis Koutsellis
    Georgios Xexakis
    Konstantinos Koasidis
    Alexandros Nikas
    Haris Doukas
    [J]. Operational Research, 2022, 22 : 5733 - 5763
  • [9] Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps
    Koutsellis, Themistoklis
    Xexakis, Georgios
    Koasidis, Konstantinos
    Nikas, Alexandros
    Doukas, Haris
    [J]. OPERATIONAL RESEARCH, 2022, 22 (05) : 5733 - 5763
  • [10] Learning and Convergence of Fuzzy Cognitive Maps Used in Pattern Recognition
    Gonzalo Nápoles
    Elpiniki Papageorgiou
    Rafael Bello
    Koen Vanhoof
    [J]. Neural Processing Letters, 2017, 45 : 431 - 444