Neuro-Inspired Dynamic Replanning in Swarms-Theoretical Neuroscience Extends Swarming in Complex Environments

被引:0
|
作者
Hwang, Grace M. [1 ]
Schultz, Kevin M. [1 ]
Monaco, Joseph D. [2 ]
Zhang, Kechen [2 ]
机构
[1] Johns Hopkins Univ, Res & Exploratory Dev Dept, Appl Phys Lab, Laurel, MD 20723 USA
[2] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
来源
JOHNS HOPKINS APL TECHNICAL DIGEST | 2021年 / 35卷 / 04期
基金
美国国家科学基金会;
关键词
SEQUENCES; MODEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the NeuroSwarms framework, a team including researchers from the Johns Hopkins University Applied Physics Laboratory (APL) and the Johns Hopkins University School of Medicine (JHM) applied key theoretical concepts from neuroscience to models of distributed multi-agent autonomous systems and found that complex swarming behaviors arise from simple learning rules used by the mammalian brain.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 2 条
  • [1] Neuro-Inspired Dynamic Replanning in Swarms- Theoretical Neuroscience Extends Swarming in Complex Environments
    Hwang, Grace M.
    Schultz, Kevin M.
    Monaco, Joseph D.
    Zhang, Kechen
    [J]. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2021, 35 (04): : 443 - 447
  • [2] Energy Efficiency of a Quadruped Robot with Neuro-Inspired Control in Complex Environments
    Arena, Paolo
    Patane, Luca
    Taffara, Salvatore
    [J]. ENERGIES, 2021, 14 (02)