A Monte Carlo simulation and deconvolution study of detector response function

被引:1
|
作者
Feng, Y. [1 ]
Lamba, M. [1 ]
Elson, H. [1 ]
Kassing, W. [1 ]
Spitz, H. [1 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45221 USA
关键词
D O I
10.1118/1.2760668
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study is to determine the detector response function using Monte Carlo simulations of small radiation fields and simulations of detector responses to those fields. The results may be used to deconvolve the effect of finite size detectors on beam broadening in small field measurements. Method and Materials: A Monte Carlo model of a linear accelerator was generated to simulate the characteristics of a clinically used photon beam. These simulations were used to create a true beam profile. Three clinically available radiation detectors and two theoretical detectors were modeled in the beam. Detector specific models of measured beam profiles were generated from simulated detector responses. Detector response functions were deconvolved from the models of simulated measured profiles and the true beam profile. The results were then analyzed using curve fitting method. Results: The penumbra of the beam profiles generated by different cylindrical detectors demonstrated a significant linear relationship with detector radius. Detector response functions of cylindrical detectors can be approximately represented as a Gaussian curve dependent upon the radius of the detector. Fourier transform methods can be used to deconvolve the detector response function for the penumbral areas, but can introduce noise in the non‐penumbral areas. Deconvolution methods can reduce, but cannot remove the effects of detector size. Conclusions: Monte Carlo simulation can be used to model small radiation fields and detector responses. Detector response functions can be determined from the simulated fields and simulated detector responses. A deconvolution method based on a detector specific Gaussian response function can be used to reduce detector size effect in the penumbral areas. © 2007, American Association of Physicists in Medicine. All rights reserved.
引用
收藏
页码:2406 / 2406
页数:1
相关论文
共 50 条
  • [1] Monte Carlo simulation of a NaI[Tl] detector's response function
    Olaniyi, H. B.
    Owojori, A. A.
    Olise, F. S.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [2] Monte Carlo simulation of beta radiation response function for semiconductor Si detector
    Grujic, Selena
    Milosevic, Miodrag
    Kozmidis-Luburic, Uranija
    Bikit, Istvan
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 654 (01): : 288 - 292
  • [3] Components of detector response function:: Monte Carlo simulations and experiment
    Pekoz, Rengin
    Can, Cuneyt
    [J]. X-RAY SPECTROMETRY, 2006, 35 (06) : 347 - 351
  • [4] Monte Carlo simulation study on phase function
    Fu, Yongji
    Jacques, Steven L.
    [J]. OPTICAL INTERACTIONS WITH TISSUE AND CELLS XVII, 2006, 6084
  • [5] The Monte Carlo simulation of the Borexino detector
    Agostini, M.
    Altenmueller, K.
    Appel, S.
    Atroshchenko, V.
    Bagdasarian, Z.
    Basilico, D.
    Bellini, G.
    Benziger, J.
    Bick, D.
    Bonfini, G.
    Borodikhina, L.
    Bravo, D.
    Caccianiga, B.
    Calaprice, F.
    Caminata, A.
    Canepa, M.
    Caprioli, S.
    Carlini, M.
    Cavalcante, P.
    Chepurnov, A.
    Choi, K.
    D'Angelo, D.
    Davini, S.
    Derbin, A.
    Ding, X. F.
    Di Noto, L.
    Drachnev, I.
    Fomenko, K.
    Formozov, A.
    Franco, D.
    Froborg, F.
    Gabriele, F.
    Galbiati, C.
    Ghiano, C.
    Giammarchi, M.
    Goeger-Neff, M.
    Goretti, A.
    Gromov, M.
    Hagner, C.
    Houdy, T.
    Hungerford, E.
    Ianni, Aldo
    Ianni, Andrea
    Jany, A.
    Jeschke, D.
    Kobychev, V.
    Korablev, D.
    Korga, G.
    Kryn, D.
    Laubenstein, M.
    [J]. ASTROPARTICLE PHYSICS, 2018, 97 : 136 - 159
  • [6] Monte Carlo Simulation of a CZT Detector
    Chun, Sung Dae
    Park, Se Hwan
    Ha, Jang Ho
    Kim, Han Soo
    Cho, Yoon Ho
    Kang, Sang Mook
    Kim, Yong Kyun
    Hong, Duk Geun
    [J]. JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2008, : 549 - 552
  • [7] Primary study of Monte Carlo simulation on CdZnTe nuclear detector
    Ren, SJ
    Sang, WB
    Jin, W
    Li, WW
    Zhang, Q
    Min, JH
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2004, 28 (02): : 191 - 195
  • [8] Monte Carlo simulation of the BEGe detector response function for in vivo measurements of 241Am in the skull
    Fantinova, K.
    Fojtik, P.
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2014, 104 : 345 - 350
  • [9] Fast modelling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function
    Song, X
    Segars, WP
    Du, Y
    Tsui, BMW
    Frey, EC
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (08): : 1791 - 1804
  • [10] Monte Carlo simulation of NaI(Tl) detector and GRAVEL deconvolution for biological, geological samples and their dosimetry evaluation
    Boukhalfa, S.
    Mohamed, M. Ould Mohamed Sidi
    Khelifi, R.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (09)