Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models

被引:6
|
作者
Ju, Yuanyuan [1 ,2 ,3 ]
Yang, Yan [1 ]
Hu, Mingxing [1 ]
Dai, Lin [1 ]
Wu, Liucang [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Key Lab Ind Engn Stat Anal, Kunming 650500, Yunnan, Peoples R China
[4] Kunming Univ Sci & Technol, Ctr Appl Stat, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
skew-normal distribution; spatial autoregression model; Bayesian local influence; Bayesian case influence; MCMC algorithm; LOCAL INFLUENCE ANALYSIS; STATISTICAL-INFERENCE; MIXED MODELS;
D O I
10.3390/math10081306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In spatial data analysis, outliers or influential observations have a considerable influence on statistical inference. This paper develops Bayesian influence analysis, including the local influence approach and case influence measures in skew-normal spatial autoregression models (SSARMs). The Bayesian local influence method is proposed to evaluate the impact of small perturbations in data, the distribution of sampling and prior. To measure the extent of different perturbations in SSARMs, the Bayes factor, the phi-divergence and the posterior mean distance are established. A Bayesian case influence measure is presented to examine the influence points in SSARMs. The potential influence points in the models are identified by Cook's posterior mean distance and Cook's posterior mode distance phi-divergence. The Bayesian influence analysis formulation of spatial data is given. Simulation studies and examples verify the effectiveness of the presented methodologies.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bayesian local influence analysis of skew-normal spatial dynamic panel data models
    Ju, Yuanyuan
    Tang, Niansheng
    Li, Xiaoxia
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (12) : 2342 - 2364
  • [2] Skew-normal Bayesian spatial heterogeneity panel data models
    Farzammehr, Mohadeseh Alsadat
    Zadkarami, Mohammad Reza
    McLachlan, Geoffrey J.
    Lee, Sharon X.
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (05) : 804 - 826
  • [3] Bayesian inference for skew-normal linear mixed models
    Arellano-Valle, R. B.
    Bolfarine, H.
    Lachos, V. H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 663 - 682
  • [4] Local Influence Analysis for Skew-Normal Linear Mixed Models
    Montenegro, Lourdes C.
    Lachos, Victor H.
    Bolfarine, Heleno
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (04) : 484 - 496
  • [5] Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models
    Zhao, Yuan-Ying
    Duan, Xing-De
    Li, De-Wang
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL INTELLIGENCE (ICMAI 2018), 2018, : 15 - 20
  • [6] Bayesian quantile regression for skew-normal linear mixed models
    Aghamohammadi, A.
    Meshkani, M. R.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 10953 - 10972
  • [7] Bayesian analysis of censored linear regression models with scale mixtures of skew-normal distributions
    Massuia, Monique B.
    Garay, Aldo M.
    Cabral, Celso R. B.
    Lachos, V. H.
    [J]. STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 425 - 439
  • [8] Bayesian Inference for Skew-Normal Mixture Models With Left-Censoring
    Dagne, Getachew A.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (05) : 1023 - 1041
  • [9] Local influence analysis for regression models with scale mixtures of skew-normal distributions
    Zeller, C. B.
    Lachos, V. H.
    Vilca-Labra, F. E.
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (02) : 343 - 368
  • [10] Skew-normal factor analysis models with incomplete data
    Liu, M.
    Lin, T. I.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 789 - 805