Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models
被引:6
|
作者:
Ju, Yuanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
Kunming Univ Sci & Technol, Fac Sci, Key Lab Ind Engn Stat Anal, Kunming 650500, Yunnan, Peoples R ChinaKunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
Ju, Yuanyuan
[1
,2
,3
]
论文数: 引用数:
h-index:
机构:
Yang, Yan
[1
]
Hu, Mingxing
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R ChinaKunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
Hu, Mingxing
[1
]
论文数: 引用数:
h-index:
机构:
Dai, Lin
[1
]
Wu, Liucang
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Ctr Appl Stat, Kunming 650500, Yunnan, Peoples R ChinaKunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
Wu, Liucang
[4
]
机构:
[1] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Key Lab Ind Engn Stat Anal, Kunming 650500, Yunnan, Peoples R China
[4] Kunming Univ Sci & Technol, Ctr Appl Stat, Kunming 650500, Yunnan, Peoples R China
skew-normal distribution;
spatial autoregression model;
Bayesian local influence;
Bayesian case influence;
MCMC algorithm;
LOCAL INFLUENCE ANALYSIS;
STATISTICAL-INFERENCE;
MIXED MODELS;
D O I:
10.3390/math10081306
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In spatial data analysis, outliers or influential observations have a considerable influence on statistical inference. This paper develops Bayesian influence analysis, including the local influence approach and case influence measures in skew-normal spatial autoregression models (SSARMs). The Bayesian local influence method is proposed to evaluate the impact of small perturbations in data, the distribution of sampling and prior. To measure the extent of different perturbations in SSARMs, the Bayes factor, the phi-divergence and the posterior mean distance are established. A Bayesian case influence measure is presented to examine the influence points in SSARMs. The potential influence points in the models are identified by Cook's posterior mean distance and Cook's posterior mode distance phi-divergence. The Bayesian influence analysis formulation of spatial data is given. Simulation studies and examples verify the effectiveness of the presented methodologies.
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China
Ju, Yuanyuan
论文数: 引用数:
h-index:
机构:
Tang, Niansheng
Li, Xiaoxia
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China