Determining operation tolerances of memristor-based artificial neural networks

被引:0
|
作者
Danilin, S. N. [1 ]
Shchanikov, S. A. [1 ]
Panteleev, S. V. [1 ]
机构
[1] Vladimir State Univ, Murom Inst, Dept CAD Syst & Informat Technol, Murom, Russia
基金
俄罗斯基础研究基金会;
关键词
artificial neural networks; memristors; accuracy; operation tolerances; fault tolerance;
D O I
10.1109/EnT.2016.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article offers a general approach to developing methods of determining operation tolerances for the parameters' values of memristor-based artificial neural networks (ANNM), as a system that constitutes an united physical and informational object implemented by the hardware and software learning facilities. While looking for a solution to the issues of analysis and synthesis of this system's tolerances, the authors conducted its functional and structural decomposition with the introduction of several levels of hierarchy of the system, subsystems, functional links, and circuit components. The authors have researched the developed synthesis algorithm for the operation tolerances through the example of a two-layer feedforward neural network taught to detect the squitter of an info-communication signal when affected by noise, and implemented in MATLAB. The main parameters of neurons varied in the course of the research.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [1] Algorithm for Determining Optimum Operation Tolerances of Memristor-Based Artificial Neural Networks
    Danilin, S. N.
    Shchanikov, S. A.
    Sakulin, A. E.
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (EN&T), 2017, : 140 - 144
  • [2] Memristor-based Neuromorphic Implementations for Artificial Neural Networks
    Zhao, Chun
    Zhou, Guang You
    Zhao, Ce Zhou
    Yang, Li
    Man, Ka Lok
    Lim, Eng Gee
    [J]. 2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 174 - 175
  • [3] Hardware implementation of memristor-based artificial neural networks
    Fernando Aguirre
    Abu Sebastian
    Manuel Le Gallo
    Wenhao Song
    Tong Wang
    J. Joshua Yang
    Wei Lu
    Meng-Fan Chang
    Daniele Ielmini
    Yuchao Yang
    Adnan Mehonic
    Anthony Kenyon
    Marco A. Villena
    Juan B. Roldán
    Yuting Wu
    Hung-Hsi Hsu
    Nagarajan Raghavan
    Jordi Suñé
    Enrique Miranda
    Ahmed Eltawil
    Gianluca Setti
    Kamilya Smagulova
    Khaled N. Salama
    Olga Krestinskaya
    Xiaobing Yan
    Kah-Wee Ang
    Samarth Jain
    Sifan Li
    Osamah Alharbi
    Sebastian Pazos
    Mario Lanza
    [J]. Nature Communications, 15
  • [4] Hardware implementation of memristor-based artificial neural networks
    Aguirre, Fernando
    Sebastian, Abu
    Le Gallo, Manuel
    Song, Wenhao
    Wang, Tong
    Yang, J. Joshua
    Lu, Wei
    Chang, Meng-Fan
    Ielmini, Daniele
    Yang, Yuchao
    Mehonic, Adnan
    Kenyon, Anthony
    Villena, Marco A.
    Roldan, Juan B.
    Wu, Yuting
    Hsu, Hung-Hsi
    Raghavan, Nagarajan
    Sune, Jordi
    Miranda, Enrique
    Eltawil, Ahmed
    Setti, Gianluca
    Smagulova, Kamilya
    Salama, Khaled N.
    Krestinskaya, Olga
    Yan, Xiaobing
    Ang, Kah-Wee
    Jain, Samarth
    Li, Sifan
    Alharbi, Osamah
    Pazos, Sebastian
    Lanza, Mario
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Memristor-based neural networks
    Thomas, Andy
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (09)
  • [6] The Research of Fault Tolerance of Memristor-Based Artificial Neural Networks
    Danilin, S. N.
    Shchanikov, S. A.
    Zuev, A. D.
    Bordanov, I. A.
    Sakulin, A. E.
    [J]. 12TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2019), 2019, : 539 - 544
  • [7] Advances in Memristor-Based Neural Networks
    Xu, Weilin
    Wang, Jingjuan
    Yan, Xiaobing
    [J]. FRONTIERS IN NANOTECHNOLOGY, 2021, 3
  • [8] Quantitative determination of fault tolerance of memristor-based artificial neural networks
    Danilin, S. N.
    Shchanikov, S. A.
    Bordanov, I. A.
    Zuev, A. D.
    [J]. INTERNATIONAL CONFERENCE: INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY, 2019, 1333
  • [9] Memristor-based neural networks: a bridge from device to artificial intelligence
    Cao, Zelin
    Sun, Bai
    Zhou, Guangdong
    Mao, Shuangsuo
    Zhu, Shouhui
    Zhang, Jie
    Ke, Chuan
    Zhao, Yong
    Shao, Jinyou
    [J]. NANOSCALE HORIZONS, 2023, 8 (06) : 716 - 745
  • [10] Analytical Calculation of Inference in Memristor-based Stochastic Artificial Neural Networks
    Bogun, Nicolas
    Quesada, Emilio Perez-Bosch
    Perez, Eduardo
    Wenger, Christian
    Kloes, Alexander
    Schwarz, Mike
    [J]. 2022 29TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM (MIXDES 2022), 2022, : 83 - 88