Strong Conflict-Free Coloring for Intervals

被引:0
|
作者
Cheilaris, Panagiotis [1 ]
Gargano, Luisa [2 ]
Rescigno, Adele A. [2 ]
Smorodinsky, Shakhar [3 ]
机构
[1] Univ Svizzera italiana, Fac Informat, Lugano, Switzerland
[2] Univ Salerno, Dipartimento Informat, I-84048 Fisciano, Italy
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the k-strong conflict-free (k-SCF) coloring of a set of points on a line with respect to a family of intervals: Each point on the line must be assigned a color so that the coloring is conflict-free in the following sense: in every interval I of the family there are at least k colors each appearing exactly once in I. We first present a polynomial time algorithm for the general problem; the algorithm has approximation ratio 2 when k = 1 and 5 -2/k when k > 1 (our analysis is tight). In the special case of a family that contains all possible intervals on the given set of points, we show that a 2-approximation algorithm exists, for any k >= 1. We also show that the problem of deciding whether a given family of intervals can be 1-SCF colored with at most q colors has a quasipolynomial time algorithm.
引用
收藏
页码:4 / 13
页数:10
相关论文
共 50 条
  • [1] Strong Conflict-Free Coloring for Intervals
    Cheilaris, Panagiotis
    Gargano, Luisa
    Rescigno, Adele A.
    Smorodinsky, Shakhar
    ALGORITHMICA, 2014, 70 (04) : 732 - 749
  • [2] Strong Conflict-Free Coloring for Intervals
    Panagiotis Cheilaris
    Luisa Gargano
    Adele A. Rescigno
    Shakhar Smorodinsky
    Algorithmica, 2014, 70 : 732 - 749
  • [3] Online conflict-free coloring of intervals
    Abam, M. A.
    Seraji, M. J. Rezaei
    Shadravan, M.
    SCIENTIA IRANICA, 2014, 21 (06) : 2138 - 2141
  • [4] Online Conflict-Free Coloring for Intervals
    Fiat, Amos
    Levy, Meital
    Matousek, Jiri
    Mossel, Elchanan
    Pach, Janos
    Sharir, Micha
    Smorodinsky, Shakhar
    Wagner, Uli
    Welzl, Emo
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 545 - 554
  • [5] Online conflict-free coloring for intervals
    Chen, Ke
    Fiat, Amos
    Kaplan, Haim
    Levy, Meital
    Matousek, Jiri
    Mossel, Elchanan
    Pach, Janos
    Sharir, Micha
    Smorodinsky, Shakhar
    Wagner, Uli
    Welzl, Emo
    SIAM JOURNAL ON COMPUTING, 2006, 36 (05) : 1342 - 1359
  • [6] Tight online conflict-free coloring of intervals
    Abam, M. A.
    SCIENTIA IRANICA, 2021, 28 (03) : 1493 - 1496
  • [7] Tight online conflict-free coloring of intervals
    Abam M.A.
    Scientia Iranica, 2021, 28 (3 D) : 1493 - 1496
  • [8] Conflict-Free Coloring of points on a line with respect to a set of intervals
    Katz, Matthew J.
    Lev-Tov, Nissan
    Morgenstern, Gila
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (09): : 508 - 514
  • [9] Deterministic Conflict-Free Coloring for Intervals: From Offline to Online
    Bar-Noy, Amotz
    Cheilaris, Panagiotis
    Smorodinsky, Shakhar
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
  • [10] CONFLICT-FREE COLORING OF GRAPHS
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2675 - 2702