Microstructural modeling of crack nucleation and propagation in high strength martensitic steels

被引:31
|
作者
Wu, Q. [1 ]
Zikry, M. A. [1 ]
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
关键词
Dislocation-density; Lath martensite; Retained austenite; Crack nucleation; MEAN FREE PATHS; LATH MARTENSITE; RETAINED AUSTENITE; MECHANICAL-PROPERTIES; STRAIN LOCALIZATION; TEMPERED MARTENSITE; CRYSTALLOGRAPHY; MORPHOLOGY; TRANSMISSION; DEFORMATION;
D O I
10.1016/j.ijsolstr.2014.08.021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A dislocation-density based multiple-slip crystalline plasticity formulation, a dislocation-density grain boundary (GB) interaction scheme, and an overlapping fracture method were used to investigate crack nucleation and propagation in martensitic steel with retained austenite for both quasi-static and dynamic loading conditions. The formulation accounts for variant morphologies, orientation relationships, and retained austenite that are uniquely inherent to lath martensitic microstructures. The interrelated effects of dislocation-density evolution ahead of crack front and the variant distribution of martensitic blocks on crack nucleation and propagation are investigated. It is shown that dislocation-density generation ahead of crack front can induce dislocation-density accumulations and plastic deformation that can blunt crack propagation. These predictions indicate that variant distribution of martensitic blocks can be optimized to mitigate and potentially inhibit material failure. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4345 / 4356
页数:12
相关论文
共 50 条
  • [1] Micromechanical Modeling of Fatigue Crack Nucleation around Non-Metallic Inclusions in Martensitic High-Strength Steels
    Schaefer, Benjamin Josef
    Sonnweber-Ribic, Petra
    ul Hassan, Hamad
    Hartmaier, Alexander
    METALS, 2019, 9 (12)
  • [2] Effect of the Martensitic Transformation on Crack Nucleation and Propagation in Metastable Austenitic Steels.
    Savalei, E.V.
    Bogachev, I.N.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya, 1984, (01): : 105 - 108
  • [3] Microstructural Characterization of Ultra-High Strength Martensitic Steels
    Ester, R.
    Sonnleitner, M.
    Stadler, M.
    Woelger, G.
    Schnitzer, R.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (04): : 203 - 222
  • [4] Fatigue Crack Propagation Rate in High-Strength Steels with a Low-Temperature Martensitic Structure.
    Matocha, Karel
    Hyspecka, Ludmila
    Mazanec, Karel
    1600, (16):
  • [5] Microstructurally induced fracture nucleation and propagation in martensitic steels
    Shanthraj, P.
    Zikry, M. A.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (04) : 1091 - 1105
  • [6] FATIGUE CRACK-PROPAGATION IN MARTENSITIC AND AUSTENITIC STEELS
    BATHIAS, C
    PELLOUX, RM
    METALLURGICAL TRANSACTIONS, 1973, 4 (05): : 1265 - 1273
  • [7] CRACK NUCLEATION AND PROPAGATION OF CORROSION FATIGUE IN HIGH-STRENGTH STEEL
    HIROSE, Y
    MURA, T
    ENGINEERING FRACTURE MECHANICS, 1985, 22 (05) : 859 - 870
  • [8] CRACK PROPAGATION AND CRACK BRANCHING OF HIGH STRENGTH STEELS IN LIQUID ZINC EMBRITTLEMENT.
    Nakasa, Keijiro
    Suzawa, Masakuni
    Zairyo/Journal of the Society of Materials Science, Japan, 1988, 37 (417) : 676 - 682
  • [9] LOW CYCLE FATIGUE CRACK PROPAGATION CHARACTERISTICS OF HIGH STRENGTH STEELS
    CARMAN, CM
    KATLIN, JM
    JOURNAL OF BASIC ENGINEERING, 1966, 88 (04): : 792 - &
  • [10] Fatigue crack propagation in thin wires of ultra high strength steels
    Petit, J.
    Sarrazin-Baudoux, C.
    Lorenzi, F.
    FATIGUE 2010, 2010, 2 (01): : 2317 - 2326