Computing with quadratic forms over number fields

被引:6
|
作者
Koprowski, Przemystaw [1 ]
Czogala, Alfred [1 ]
机构
[1] Univ Silesia, Fac Math, Ul Bankowa 14, PL-40007 Katowice, Poland
关键词
Algorithms; Quadratic forms; Number fields; Level; Pythagoras number; Witt equivalence; WITT EQUIVALENCE; NEWTON POLYGONS;
D O I
10.1016/j.jsc.2017.11.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents fundamental algorithms for the computational theory of quadratic forms over number fields. In the first part of the paper, we present algorithms for checking if a given non degenerate quadratic form over a fixed number field is either isotropic (respectively locally isotropic) or hyperbolic (respectively locally hyperbolic). Next we give a method of computing the dimension of an anisotropic part of a quadratic form. The second part of the paper is devoted to algorithms computing two field invariants: the level and the Pythagoras number. Ultimately we present an algorithm verifying whether two number fields have isomorphic Witt rings (i.e. are Witt equivalent). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条