Restrained domination polynomial in graphs

被引:4
|
作者
Kayathri, K. [1 ]
Kokilambal, G. [1 ]
机构
[1] Thiagarajar Coll, PG & Res Dept Math, Madurai 625009, Tamil Nadu, India
关键词
Domination; restrained domination; polynomial;
D O I
10.1080/09720529.2019.1681693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph of order n and size m. A set S subset of V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V - S. The restrained domination number of G, denoted by gamma(r)(G), is the smallest cardinality of a restrained dominating set of G. Let gamma(r)(G, i) denote the number of restrained dominating sets with cardinality i. Then the restrained domination polynomial(RDP) D-r(G, x) of G is defined as D-r(G, x) = Sigma(n)(i=1)d(r)(G,i)x(i). In this paper we determine the restrained domination polynomial for complete graphs, complete bipartite graphs, paths, cycles and products of K-2 with K-k.
引用
收藏
页码:761 / 775
页数:15
相关论文
共 50 条
  • [1] Restrained domination polynomial of join and corona of graphs
    Velmurugan, S.
    Kala, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [2] Remarks on restrained domination and total restrained domination in graphs
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) : 393 - 396
  • [3] Remarks on restrained domination and total restrained domination in graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2005, 55 : 393 - 396
  • [4] Restrained domination in graphs
    Domke, GS
    Hattingh, JH
    Hedetniemi, ST
    Laskar, RC
    Markus, LR
    DISCRETE MATHEMATICS, 1999, 203 (1-3) : 61 - 69
  • [5] Restrained domination in graphs
    Discrete Math, 1-3 (61-69):
  • [6] The Restrained Domination and Independent Restrained Domination in Extending Supergrid Graphs
    Hung, Ruo-Wei
    Chiu, Ming-Jung
    COMPUTING AND COMBINATORICS (COCOON 2021), 2021, 13025 : 401 - 412
  • [7] Restrained geodetic domination polynomial
    Mulloor, John Joy
    Sangeetha, V.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [8] Restrained and Total Restrained Domination of Ladder Graphs
    Hemalatha, N. C.
    Chandrakala, S. B.
    Sooryanarayana, B.
    Kumar, M. Vishu
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (04): : 1311 - 1323
  • [9] Restrained domination in cubic graphs
    Hattingh, Johannes H.
    Joubert, Ernst J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 166 - 179
  • [10] RESTRAINED EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (02): : 183 - 192