Research on Personalized Document Retrieval and Ranking Strategy

被引:0
|
作者
Tang, Hai [1 ]
Hu, Zhihui [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Elect & Informat Engn, Shiyan 442002, Peoples R China
关键词
cognitive structure; word Relativity; personalized retrieval; document ranking;
D O I
10.1109/itaic.2019.8785772
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to provide appropriate text information in line with users' cognitive level, a new personalized retrieval method is proposed in this paper. At first user's personalized cognitive structure should be established and with this structure user's cognitive level can be represented formally. Then related concept can be extended around the keywords, and queried documents should be ranked according to the user's cognitive level and the content of the document. Experiments show that different users will get different search results even if they use the same keywords.
引用
收藏
页码:1423 / 1426
页数:4
相关论文
共 50 条
  • [1] Semantic relation based personalized ranking approach for engineering document retrieval
    Hahm, Gyeong June
    Lee, Jae Hyun
    Suh, Hyo Won
    [J]. ADVANCED ENGINEERING INFORMATICS, 2015, 29 (03) : 366 - 379
  • [2] Research on Personalized Document Retrieval based on User Interest Model
    Xu Li
    Yang WeiZhong
    [J]. PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 1771 - 1773
  • [3] Neural ranking models for document retrieval
    Mohamed Trabelsi
    Zhiyu Chen
    Brian D. Davison
    Jeff Heflin
    [J]. Information Retrieval Journal, 2021, 24 : 400 - 444
  • [4] Neural ranking models for document retrieval
    Trabelsi, Mohamed
    Chen, Zhiyu
    Davison, Brian D.
    Heflin, Jeff
    [J]. INFORMATION RETRIEVAL JOURNAL, 2021, 24 (06): : 400 - 444
  • [5] A new Retrieval ranking method based on Document retrieval expected value in Chinese document
    Wang, Tao
    Chen, Mei
    Jiang, Yan
    Wang, Hanhu
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 367 - 371
  • [6] RANKING WITH QUERY INFLUENCE WEIGHTING FOR DOCUMENT RETRIEVAL
    Liao, Zhen
    Huang, Ya Lou
    Xie, Mao Qiang
    Liu, Jie
    Wang, Yang
    Lui, Min
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 1177 - +
  • [7] Semi-supervised ranking for document retrieval
    Duh, Kevin
    Kirchhoff, Katrin
    [J]. COMPUTER SPEECH AND LANGUAGE, 2011, 25 (02): : 261 - 281
  • [8] The Impact of Document Level Ranking on Focused Retrieval
    Kamps, Jaap
    Koolen, Marijn
    [J]. ADVANCES IN FOCUSED RETRIEVAL, 2009, 5631 : 140 - 151
  • [9] Coeus: A System for Oblivious Document Ranking and Retrieval
    Ahmad, Ishtiyaque
    Sarker, Laboni
    Agrawal, Divyakant
    El Abbadi, Amr
    Gupta, Trinabh
    [J]. PROCEEDINGS OF THE 28TH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, SOSP 2021, 2021, : 672 - 690
  • [10] Optimizing personalized retrieval system based on web ranking
    Wang, Hao-ming
    Guo, Ye
    Feng, Bo-qin
    [J]. COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 629 - 640