CONVERGENCE TO PERIODIC PROBABILITY SOLUTIONS IN FOKKER-PLANCK EQUATIONS

被引:7
|
作者
Ji, Min [1 ,2 ]
Qi, Weiwei [3 ,4 ]
Shen, Zhongwei [4 ]
Yi, Yingfei [4 ,5 ]
机构
[1] Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[5] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Fokker-Planck equation; periodic probability solution; uniqueness; convergence;
D O I
10.1137/20M1319127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the study of convergence of solutions of a Fokker-Planck equation (FPE) associated to a periodic stochastic differential equation with less regular coefficients under various Lyapunov conditions. In the case of nondegenerate noises, we prove two types of convergence of solutions to the unique periodic probability solution, namely, convergence in mean and exponential convergence. In the case of degenerate noises, we show the convergence of solutions in mean to the set of periodic probability solutions. New results on the uniqueness of periodic probability solutions and global probability solutions of the FPE are also obtained. As applications, we study the long-time behaviors of the FPEs associated to stochastic damping Hamiltonian systems and stochastic slow-fast systems, and of weak solutions of periodic stochastic differential equations with less regular coefficients.
引用
收藏
页码:1958 / 1992
页数:35
相关论文
共 50 条
  • [1] Existence of periodic probability solutions to Fokker-Planck equations with applications
    Ji, Min
    Qi, Weiwei
    Shen, Zhongwei
    Yi, Yingfei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (11)
  • [2] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [3] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [4] Existence, Stability and Regularity of Periodic Solutions for Nonlinear Fokker-Planck Equations
    Lucon, Eric
    Poquet, Christophe
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 633 - 671
  • [5] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [6] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [7] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    [J]. DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [8] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [9] Exponential Convergence to Equilibrium for Kinetic Fokker-Planck Equations
    Calogero, Simone
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (08) : 1357 - 1390
  • [10] Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2430 - 2457