ON MOD (2s+1)-ORIENTATIONS OF GRAPHS

被引:2
|
作者
Li, Ping [1 ]
Lai, Hong-Jian [2 ,3 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
基金
中国国家自然科学基金;
关键词
mod (2p+1)-orientations; strongly Z(2p+1)-connectedness; group connectivity of graphs; degree conditions; NOWHERE-ZERO; 3-FLOWS; ORE-CONDITION; (2P+1)-ORIENTATIONS; ORIENTATIONS; CONJECTURE;
D O I
10.1137/130920435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An orientation of a graph G is a mod (2p+1)-orientation if, under this orientation, the net out-degree at every vertex is congruent to zero mod 2p+1. If, for any function b : V (G). Z(2p+1) 1 satisfying Sigma(v is an element of V(G))b(v) equivalent to 0 (mod 2p+ 1), G always has an orientation D such that the net out-degreeat every vertex v is congruent to b(v) mod 2p+ 1, then G is strongly Z(2p+1)-connected. The graph G' obtained from G by contracting all nontrivial subgraphs that are strongly Z(2s+1)-connected is called the Z(2s+1)-reduction of G. Motivated by a minimum degree condition of Barat and Thomassen [J. Graph Theory, 52 (2006), pp. 135-146], and by the Ore conditions of Fan and Zhou [SIAM J. Discrete Math., 22 (2008), pp. 288-294] and of Luo et al. [European J. Combin., 29 (2008), pp. 1587-1595] on Z(3)-connected graphs, we prove that for a simple graph G on n vertices, and for any integers s > 0 and real numbers alpha, beta with 0 < alpha < 1, if for any nonadjacent vertices u, v is an element of V (G), d(G)(u)+ d(G)(v) = an+ beta, then there exists a finite family F(alpha, s) of nonstrongly Z(2s+1)-connected graphs such that either G is strongly Z(2s+1)-connected or the Z(2s+1)-reduction of G is in F(alpha, s).
引用
收藏
页码:1820 / 1827
页数:8
相关论文
共 50 条
  • [1] Square root algorithm in Fq for q ≡ 2s+1 (mod 2s+1)
    Koo, Namhun
    Cho, Gook Hwa
    Kwon, Soonhak
    [J]. ELECTRONICS LETTERS, 2013, 49 (07) : 467 - 468
  • [2] on mod (2p+1)-orientations of graphs
    Lai, Hong-Jian
    Shao, Yehong
    Wu, Hehui
    Zhou, Ju
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 399 - 406
  • [3] Mod (2p+1)-orientations in line graphs
    Lai, Hong-Jian
    Li, Hao
    Li, Ping
    Liang, Yanting
    Yao, Senmei
    [J]. INFORMATION PROCESSING LETTERS, 2011, 111 (23-24) : 1085 - 1088
  • [4] HOW INTRICATE ARE (2S+1)-FACTORIZATIONS
    HILTON, AJW
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (02): : 241 - 247
  • [5] BILINEAR EXPRESSIONS FOR FIELDS WITH 2(2S+1) COMPOSITIONS
    GABOS, Z
    [J]. REVUE ROUMAINE DE PHYSIQUE, 1968, 13 (08): : 731 - &
  • [6] Hidden Sp(2s+1)- or SO(2s+1)-symmetry and new exactly solvable models in ultracold atomic systems
    Jiang, Yuzhu
    Cao, Junpeng
    Wang, Yupeng
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (34)
  • [7] REGULARITY OF 1-SPREADS OF PG(2S+1,Q)
    OKEEFE, CM
    [J]. ARS COMBINATORIA, 1988, 26A : 113 - 124
  • [8] MOD (2p+1)-ORIENTATION ON BIPARTITE GRAPHS AND COMPLEMENTARY GRAPHS
    Li, Jiaao
    Hou, Xinmin
    Han, Miaomiao
    Lai, Hong-Jian
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 29 - 43
  • [9] The 2(2S+1)-formalism and its connection with other descriptions
    Dvoeglazov, Valeriy V.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (04)
  • [10] On a construction of digital convex (2s+1)-gons of minimum diameter
    Matic-Kekic, S.
    Acketa, D.
    [J]. Yugoslav Journal of Operations Research, 5 (01):