GPU Profiling of Singular Value Decomposition in OLPCA Method for Image Denoising

被引:1
|
作者
Cuomo, Salvatore [1 ]
De Michele, Pasquale [1 ]
Maiorano, Francesco [1 ]
Marcellino, Livia [2 ]
机构
[1] Univ Naples Federico II, Str Vicinale Cupa Cintia 21, I-80126 Naples, Italy
[2] Univ Naples Parthenope, Dept Sci & Technol, Ctr Direz Isola C3, I-80143 Naples, Italy
关键词
D O I
10.1007/978-3-319-49109-7_68
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We focus on the Graphic Processor Unit (GPU) profiling of the Singular Value Decomposition (SVD) that is a basic task of the Overcomplete Local Principal Component Analysis (OLPCA) method. More in detail, we investigate the impact of the SVD on the OLPCA algorithm for the Magnetic Resonance Imaging (MRI) denoising application. We have resorted several parallel approaches based on scientific libraries in order to investigate the heavy computational complexity of the algorithm. The GPU implementation is based on two specific libraries: NVIDIA cuBLAS and CULA, in order to compare them. Our results show how the GPU library based solution could be adopted for improving the performance of same tasks in a denoising algorithm.
引用
收藏
页码:707 / 716
页数:10
相关论文
共 50 条
  • [1] Image Denoising Using Multiresolution Singular value Decomposition Transform
    Malini, S.
    Moni, R. S.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 1708 - 1715
  • [2] Adaptive singular value decomposition in wavelet domain for image denoising
    Hou, ZJ
    [J]. PATTERN RECOGNITION, 2003, 36 (08) : 1747 - 1763
  • [3] Image Denoising Using the Higher Order Singular Value Decomposition
    Rajwade, Ajit
    Rangarajan, Anand
    Banerjee, Arunava
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (04) : 849 - 862
  • [4] Singular Value Decomposition using Block Least Mean Square method for Image Denoising and Compression
    Boyat, Ajay Kumar
    Khare, Parth
    [J]. 2015 International Conference on Computing, Communication and Security (ICCCS), 2015,
  • [5] Singular Value Decomposition using Block Least Mean Square method for Image Denoising and Compression
    Boyat, Ajay Kumar
    Khare, Parth
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONTROL (IC4), 2015,
  • [6] A NOISE-ADJUSTED ITERATIVE RANDOMIZED SINGULAR VALUE DECOMPOSITION METHOD FOR HYPERSPECTRAL IMAGE DENOISING
    He, Wei
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1536 - 1539
  • [7] An image denoising algorithm based on adaptive clustering and singular value decomposition
    Li, Ping
    Wang, Hua
    Li, Xuemei
    Zhang, Caiming
    [J]. IET IMAGE PROCESSING, 2021, 15 (03) : 598 - 614
  • [8] Image denoising based on k-means singular value decomposition
    Ren, Jian
    Lu, Hua
    Zeng, Xiliang
    [J]. Telkomnika (Telecommunication Computing Electronics and Control), 2015, 13 (04) : 1312 - 1318
  • [9] Adaptive Denoising by Singular Value Decomposition
    He, Yanmin
    Gan, Tao
    Chen, Wufan
    Wang, Houjun
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (04) : 215 - 218
  • [10] Image Denoising Using Low Rank Matrix Approximation in Singular Value Decomposition
    Tallapragada, V. V. Satyanarayana
    Kumar, G. V. Pradeep
    Reddy, D. Venkat
    Narasihimhaprasad, K. L.
    [J]. REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 1430 - 1446