Quantum cellular automaton theory of light

被引:29
|
作者
Bisio, Alessandro [1 ]
D'Ariano, Giacomo Mauro
Perinotti, Paolo
机构
[1] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
关键词
Quantum cellular automata; Quantum walk; Maxwell's equation; Composite Boson; NEUTRINO THEORY; RELATIVITY; MECHANICS; LATTICE; GRAVITY; LENGTH; GASES; DIRAC; FIELD;
D O I
10.1016/j.aop.2016.02.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 50 条
  • [1] Modeling "quantum" field theory through "classical" cellular automaton
    Sverdlov, Roman
    6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [2] Thirring quantum cellular automaton
    Bisio, Alessandro
    D'Ariano, Giacomo Mauro
    Perinotti, Paolo
    Tosini, Alessandro
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [3] Quantum cellular automaton for universal quantum computation
    Raussendorf, R
    PHYSICAL REVIEW A, 2005, 72 (02)
  • [4] When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?
    Shakeel, Asif
    Love, Peter J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [5] Statistical properties of a quantum cellular automaton
    Inui, N
    Inokuchi, S
    Mizoguchi, Y
    Konno, N
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [6] A Physically Universal Quantum Cellular Automaton
    Schaeffer, Luke
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 46 - 58
  • [7] Quantum cellular automaton as a Markov process
    Department of Physics, Bradley University, Peoria, IL 61625, United States
    不详
    不详
    Chaos Solitons Fractals, 8 (1375-1386):
  • [8] The quantum cellular automaton as a Markov process
    Fitzpatrick, M
    Smith, K
    Belousek, DW
    Delgado, A
    Roos, KR
    Kenny, JP
    CHAOS SOLITONS & FRACTALS, 1999, 10 (08) : 1375 - 1386
  • [9] Universally programmable quantum cellular automaton
    Shepherd, D. J.
    Franz, T.
    Werner, R. F.
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [10] A quantum battle of the sexes cellular automaton
    Alonso-Sanz, Ramon
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2147): : 3370 - 3383