Strain-induced bandgap engineering in C3N nanotubes

被引:7
|
作者
Yin, Yuling [1 ]
Chen, Hangyan [2 ]
Yuan, Qinghong [1 ,3 ,4 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] New York Univ Shanghai, New York Univ East China Normal Univ Ctr Computat, Shanghai 200062, Peoples R China
[4] Univ Queensland, Ctr Theoret & Computat Mol Sci, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
基金
中国国家自然科学基金;
关键词
C3N nanotube; Bandgap; Strain; Carrier mobility; TOTAL-ENERGY CALCULATIONS; SEMICONDUCTORS;
D O I
10.1016/j.cplett.2021.138390
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Theoretical calculations have been used to investigate the electronic properties of C3N nanotubes (C3NNTs) and their tuning by applying strain. The C3NNTs are semiconductors and the application of strain can greatly adjust their bandgaps and carrier mobilities. Compressive strain along the axial direction enlarges the bandgap while the tensile strain reduces the bandgap of the nanotubes. Different carrier mobilities of armchair, zigzag and chiral C3NNTs under external strain have been revealed. Therefore, external strain is expected to be a powerful tool to modulate the electronic properties of C3NNTs, making C3NNTs to have promising applications in nano scale sensors and electronic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Bandgap engineering of two-dimensional C3N bilayers
    Wei, Wenya
    Yang, Siwei
    Wang, Gang
    Zhang, Teng
    Pan, Wei
    Cai, Zenghua
    Yang, Yucheng
    Zheng, Li
    He, Peng
    Wang, Lei
    Baktash, Ardeshir
    Zhang, Quanzhen
    Liu, Liwei
    Wang, Yeliang
    Ding, Guqiao
    Kang, Zhenhui
    Yakobson, Boris I.
    Searles, Debra J.
    Yuan, Qinghong
    NATURE ELECTRONICS, 2021, 4 (07) : 486 - 494
  • [2] Bandgap engineering of two-dimensional C3N bilayers
    Wenya Wei
    Siwei Yang
    Gang Wang
    Teng Zhang
    Wei Pan
    Zenghua Cai
    Yucheng Yang
    Li Zheng
    Peng He
    Lei Wang
    Ardeshir Baktash
    Quanzhen Zhang
    Liwei Liu
    Yeliang Wang
    Guqiao Ding
    Zhenhui Kang
    Boris I. Yakobson
    Debra J. Searles
    Qinghong Yuan
    Nature Electronics, 2021, 4 : 486 - 494
  • [3] Mechanical properties of C3N nanotubes
    Ghasemi, Hamid
    Abraham, Brandon
    Rutledge, Jade
    Yazdani, Hessam
    DIAMOND AND RELATED MATERIALS, 2020, 109
  • [4] Carbon nanotubes - Bandgap engineering with strain
    Maiti, A
    NATURE MATERIALS, 2003, 2 (07) : 440 - 442
  • [5] Electric field- and strain-induced bandgap modulation in bilayer C2N
    Dabsamut, Klichchupong
    Maluangnont, Tosapol
    Reunchan, Pakpoom
    T-Thienprasert, Jiraroj
    Jungthawan, Sirichok
    Boonchun, Adisak
    APPLIED PHYSICS LETTERS, 2022, 120 (20)
  • [6] Hydrogenated C3N: Variable-bandgap stable structures and induced antiferromagnetic properties
    Wu, Zhenyu
    Zhang, Hong
    Lin, Jiahe
    Zhao, Jimin
    Cheng, Xinlu
    CHEMICAL PHYSICS, 2020, 528
  • [7] Phononic thermal transport properties of C3N nanotubes
    Elapolu, Mohan S. R.
    Tabarraei, Alireza
    Reihani, Amin
    Ramazani, Ali
    NANOTECHNOLOGY, 2020, 31 (03)
  • [8] Bandgap tuning of C3N monolayer: A first-principles study
    Xie, Liyan
    Yang, Li
    Ge, Wanying
    Wang, Xijun
    Jiang, Jun
    CHEMICAL PHYSICS, 2019, 520 : 40 - 46
  • [9] Computational study of interaction of alkali metals with C3N nanotubes
    Molani, Farzad
    Jalili, Seifollah
    Schofield, Jeremy
    JOURNAL OF MOLECULAR MODELING, 2015, 21 (02)
  • [10] Computational study of interaction of alkali metals with C3N nanotubes
    Farzad Molani
    Seifollah Jalili
    Jeremy Schofield
    Journal of Molecular Modeling, 2015, 21