Isentropic Approximation and Gevrey Regularity for the Full Compressible Euler Equations in RN

被引:0
|
作者
Wu, Xinglong [1 ,2 ]
机构
[1] Wuhan Univ Technol, Ctr Math Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
关键词
The full compressible Euler equations; The isentropic compressible Euler equations; Polytropic fluid; Analytic solution; Gevrey regularity; Isentropic approximation; GAS-DYNAMICS; SINGULARITIES; STABILITY;
D O I
10.1007/s00021-021-00569-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article is devoted to the study of isentropic approximation and Gevrey regularity for the full compressible Euler system in R-N (or T-N) with any dimension N >= 1. We first establish the existence and uniqueness of solution in Gevrey function spaces G(sigma,s)(r)(R-N), then with the definition modulus of continuity, we show that the solution of Euler system is continuously dependent of the initial data v(0) in G(sigma,s)(r)(R-N). Finally, the isentropic approximation is investigated in Banach spaces B-T(nu) (R-N), provided the initial entropy S-0(x) changes closing a constant (S) over bar in Gevrey function spaces G(sigma,s)(r)(R-N).
引用
收藏
页数:16
相关论文
共 50 条