Unit Commitment Problem Solved by the Hybrid Particle Swarm-Whale Optimization Method Using Algorithm for Medical Internet of Things MIoT

被引:1
|
作者
Ibrahim, Maather [1 ,2 ]
Ucan, Osman N. [1 ]
Bayat, Oguz [1 ]
机构
[1] Altinbas Univ Mahmutbey, Sch Engn & Nat Sci, TR-34218 Istanbul, Turkey
[2] Diyala Univ, Coll Engn, Diyala 32001, Iraq
关键词
Unit Commitment; Medical Image Processing; Whale Optimization; Particle Swarm Optimization; Hybrid Particle Swarm-Whale Optimization;
D O I
10.1166/jmihi.2020.2834
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nowadays the Whale Optimization Algorithm (WOA) technique has gained significant attention from researchers for different applications; especially in medical image processing for tasks such as image segmentation. For accurate diagnosis and treatment, automated information is required from different medical images (MRI and CT) modalities through image segmentation. Accurate segmentation leads to an accurate diagnosis. Segmentation accuracy has recently been achieved by WOA; however, there have yet to be refinements by the WOA, which are indeed required to address the complete objectives of medical image segmentation. In this paper, we focused on using a novel hybrid optimization technique based on WOA and Particle Swarm Optimization (PSO) called HPSO_WOA to solve the unit commitment problem with reference to medical image segmentation. We presented the evaluation of HPSO_WOA with PSO and WOA in order to solve this unit commitment problem. For the most part, there are two steps to manage this issue. The initial step discovers which units will be worked on, which tends to be comprehended by utilizing numerous techniques, for example, the priority list strategy. The second step determines the distribution of the load demand among the units, which are committed from the first step to minimize cost and achieve the load demand and constraints, which were solved in this study by using the three previously stated methods. By using the HPSO_WOA method, in all iterations of simulation, the best particle in the WOA population is inserted into the PSO population and manipulated, and then returned to the WOA population. There are four testing cases used: 4, 10, 20, and 40 generators. It combines both exploration and exploitation characteristics, so the reliability, speed of convergence, and accuracy are increased.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [1] Solving Unit Commitment problem using Hybrid Particle Swarm Optimization
    Ting, TO
    Rao, MVC
    Loo, CK
    Ngu, SS
    JOURNAL OF HEURISTICS, 2003, 9 (06) : 507 - 520
  • [2] Solving Unit Commitment Problem Using Hybrid Particle Swarm Optimization
    Tiew-On Ting
    M.V.C. Rao
    C.K. Loo
    S.S. Ngu
    Journal of Heuristics, 2003, 9 : 507 - 520
  • [3] Unit commitment problem using enhanced particle swarm optimization algorithm
    Xiaohui Yuan
    Anjun Su
    Hao Nie
    Yanbin Yuan
    Liang Wang
    Soft Computing, 2011, 15 : 139 - 148
  • [4] Unit commitment problem using enhanced particle swarm optimization algorithm
    Yuan, Xiaohui
    Su, Anjun
    Nie, Hao
    Yuan, Yanbin
    Wang, Liang
    SOFT COMPUTING, 2011, 15 (01) : 139 - 148
  • [5] A Hybrid Particle Swarm Optimization Employing Genetic Algorithm for Unit Commitment Problem
    Singh, R. Lal Raja
    Rajan, C. Christober Asir
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2011, 6 (07): : 3211 - 3217
  • [6] The Unit Commitment Problem Based on an Improved Firefly and Particle Swarm Optimization Hybrid Algorithm
    Yang, Yuanwen
    Mao, Yi
    Yang, Peng
    Jiang, Yuanmeng
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 718 - 722
  • [7] Unit commitment optimization based on genetic algorithm and particle swarm optimization hybrid algorithm
    Zhang, Jiong
    Liu, Tian-Qi
    Su, Peng
    Zhang, Xin
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2009, 37 (09): : 25 - 29
  • [8] Thermal Unit Commitment Using hybrid Binary Particle Swarm Optimization and Genetic Algorithm
    Hosseini, S. M. Hassan
    Siahkali, H.
    Ghalandaran, Y.
    2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2012,
  • [9] A Hybrid Whale Optimization and Particle Swarm Optimization Algorithm
    Yuan, Zijing
    Li, Jiayi
    Yang, Haichuan
    Zhang, Baohang
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 260 - 264
  • [10] EHPSO: An Enhanced Hybrid Particle Swarm Optimization Algorithm for Internet of Things
    Li, Dashe
    Cheng, Dapeng
    Qin, Jihong
    Liu, Shue
    Liu, Pingping
    INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2018, 14 (06) : 203 - 211