Simultaneous lipid biosynthesis and recovery for oleaginous yeast Yarrowia lipolytica

被引:13
|
作者
Pawar, Pratik Prashant [1 ]
Odaneth, Annamma Anil [1 ]
Vadgama, Rajeshkumar Natwarlal [1 ]
Lali, Arvind Mallinath [1 ,2 ]
机构
[1] Inst Chem Technol, DBT ICT Ctr Energy Biosci, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
[2] Inst Chem Technol, Dept Chem Engn, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
关键词
Microbial oil; Yarrowia lipolytica; Continuous production; Oil capturing agent (OCA); Extractive production; INTRACELLULAR LIPIDS; PROCESS OPTIMIZATION; BIOFUEL PRODUCTION; OIL PRODUCTION; MICROBIAL OIL; IN-SITU; ACCUMULATION; ENHANCEMENT; GLUCOSE; BIOMASS;
D O I
10.1186/s13068-019-1576-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (H-eff/C similar to 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Simultaneous lipid biosynthesis and recovery for oleaginous yeast Yarrowia lipolytica
    Pratik Prashant Pawar
    Annamma Anil Odaneth
    Rajeshkumar Natwarlal Vadgama
    Arvind Mallinath Lali
    Biotechnology for Biofuels, 12
  • [2] Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    Tai, Mitchell
    Stephanopoulos, Gregory
    METABOLIC ENGINEERING, 2013, 15 : 1 - 9
  • [3] The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica
    Adam Dobrowolski
    Aleksandra M. Mirończuk
    Microbial Cell Factories, 19
  • [4] Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis
    Hardman, Derell
    McFalls, Daniel
    Fakas, Stylianos
    YEAST, 2017, 34 (02) : 83 - 91
  • [5] Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review
    Bao, Wenjun
    Li, Zifu
    Wang, Xuemei
    Gao, Ruiling
    Zhou, Xiaoqin
    Cheng, Shikun
    Men, Yu
    Zheng, Lei
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [6] Enhancement of Astaxanthin Biosynthesis in Oleaginous Yeast Yarrowia lipolytica via Microalgal Pathway
    Tramontin, Larissa Ribeiro Ramos
    Kildegaard, Kanchana Rueksomtawin
    Sudarsan, Suresh
    Borodina, Irina
    MICROORGANISMS, 2019, 7 (10)
  • [7] Functional genomics for the oleaginous yeast Yarrowia lipolytica
    Patterson, Kurt
    Yu, James
    Landberg, Jenny
    Chang, Ivan
    Shavarebi, Farbod
    Bilanchone, Virginia
    Sandmeyer, Suzanne
    METABOLIC ENGINEERING, 2018, 48 : 184 - 196
  • [8] Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica
    Liu, Shun-Cheng
    Liu, Zhijie
    Wei, Liu-Jing
    Hua, Qiang
    JOURNAL OF BIOTECHNOLOGY, 2020, 319 : 74 - 81
  • [9] Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica
    Trotter, Pamela J.
    Juco, Karen
    Le, Ha T.
    Nelson, Kjersten
    Tamayo, Lizeth, I
    Nicaud, Jean-Marc
    Park, Young-Kyoung
    YEAST, 2020, 37 (01) : 103 - 115
  • [10] Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica
    Fakas, Stylianos
    ENGINEERING IN LIFE SCIENCES, 2017, 17 (03): : 292 - 302