On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums

被引:0
|
作者
Chen, Guohui [1 ]
Zhang, Han [2 ]
机构
[1] Hainan Normal Univ, Coll Math & Stat, Hainan 571158, Peoples R China
[2] NW Univ Xian, Sch Math, Xian 710127, Shaanxi, Peoples R China
来源
关键词
D O I
10.1155/2014/726053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For any fixed integer k >= 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 <= a(i) <= p - 1 (i = 1, 2, ... , k) such that a(1)a(2) ... a(k) equivalent to r mod p. Let N(k, r; p) denote the number of all (a(1), a(2), ... a(k)) such that a(1)a(2) ... a(k) equivalent to r mod p and 2 dagger (a(1) + a(2) + ... + a(k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it.
引用
收藏
页数:5
相关论文
共 50 条