Hand-based authentication is a key biometric technology with a wide range of potential applications both in industry and government. Traditionally, hand-based authentication is performed by extracting information from the whole hand. To account for hand and finger motion, guidance pegs are employed to fix the position and orientation of the hand. In this paper, we consider a component-based approach to hand-based verification. Our objective is to investigate the discrimination power of different parts of the hand in order to develop a simpler, faster, and possibly more accurate and robust verification system. Specifically, we propose a new approach which decomposes the hand in different regions, corresponding to the fingers and the back of the palm, and performs verification using information from certain parts of the hand only. Our approach operates on 2D images acquired by placing the hand on a flat lighting table. Using a part-based representation of the hand allows the system to compensate for hand and finger motion without using any guidance pegs. To decompose the hand in different regions, we use a robust methodology based on morphological operators which does not require detecting any landmark points on the hand. To capture the geometry of the back of the palm and the fingers in sufficient detail, we employ high-order Zernike moments which are computed using an efficient methodology. The proposed approach has been evaluated on a database of 100 subjects with 10 images per subject, illustrating promising performance. Comparisons with related approaches using the whole hand for verification illustrate the superiority of the proposed approach. Moreover, qualitative comparisons with state-of-the-art approaches indicate that the proposed approach has comparable or better performance.