Tunable spatial compensation for polarization entangled photons

被引:1
|
作者
Hegazy, Salem F. [1 ,2 ]
Obayya, Salah S. A. [2 ]
机构
[1] Cairo Univ, Natl Inst Laser Enhanced Sci, Giza 12613, Egypt
[2] Zewail City Sci & Technol, Ctr Photon & Smart Mat, Giza 12578, Egypt
来源
关键词
Polarization-entangled photons; relative-phase measurements; crossed crystals; spatial light modulator (SLM); tunable phase compensation; TIME;
D O I
10.1117/12.2306942
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The polarization-entangled state produced via spontaneous parametric downconversion (SPDC) has relative-phase maps in frequency and momentum domains which give an almost complete picture about the distinguishability and purity loss in the conjugate time and space domains. We demonstrate experimentally the tunable compensation of directional relative-phase profile for entangled photons generated by two cascaded / crossed crystals and captured over ultra-wide spatial window. We use a phase-only spatial light modulator (SLM) programmable via a personal computer to flatten (or correct for) the spatial relative-phase profile and also to add on-demand spatial phase profile. A fast, yet accurate, technique is introduced for frequent relative-phase measurements based on the tilt angle of a quarter wave plate (QWP) acting on the diagonally polarized pump beam and nulling the relative-phase of the entangled state at that direction. Our experimental measurements verify previous theoretical models for tunable compensation of the polarization two-photon state produced by the cascaded crystals arrangement.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Tunable spatial decoherers for polarization-entangled photons
    Puentes, Graciana
    Voigt, Dirk
    Aiello, Andrea
    Woerdman, J. P.
    [J]. OPTICS LETTERS, 2006, 31 (13) : 2057 - 2059
  • [2] Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons
    Shtaif, Mark
    Antonelli, Cristian
    Brodsky, Misha
    [J]. OPTICS EXPRESS, 2011, 19 (03): : 1728 - 1733
  • [3] Maximally Polarization Entangled Photons on a Chip
    Zhukovsky, S. V.
    Helt, L. G.
    Abolghasem, P.
    Kang, D.
    Helmy, A. S.
    Sipe, J. E.
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [4] Broadband source of polarization entangled photons
    Fraine, A.
    Minaeva, O.
    Simon, D. S.
    Egorov, R.
    Sergienko, A. V.
    [J]. OPTICS LETTERS, 2012, 37 (11) : 1910 - 1912
  • [5] Tunable control of the frequency correlations of entangled photons
    Hendrych, M.
    Micuda, M.
    Torres, J. P.
    [J]. OPTICS LETTERS, 2007, 32 (16) : 2339 - 2341
  • [6] Twin photons entangled in polarization and angular momentum
    Barbosa, GA
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (03): : 433 - 440
  • [7] Ultrabright source of polarization-entangled photons
    Kwiat, PG
    Waks, E
    White, AG
    Appelbaum, I
    Eberhard, PH
    [J]. PHYSICAL REVIEW A, 1999, 60 (02): : R773 - R776
  • [8] Versatile source of polarization-entangled photons
    Maser, A.
    Wiegner, R.
    Schilling, U.
    Thiel, C.
    von Zanthier, J.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [9] Stimulated emission of polarization-entangled photons
    Lamas-Linares, A
    Howell, JC
    Bouwmeester, D
    [J]. NATURE, 2001, 412 (6850) : 887 - 890
  • [10] Compact sources of polarization-entangled photons
    Fiorentino, Marco
    Beausoleil, Raymond G.
    [J]. OPTICS EXPRESS, 2008, 16 (24) : 20149 - 20156