Accurate Measurement of the Gap of Graphene/h-BN Moire Superlattice through Photocurrent Spectroscopy

被引:19
|
作者
Han, Tianyi [1 ]
Yang, Jixiang [1 ]
Zhang, Qihang [1 ]
Wang, Lei [2 ,3 ,4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
McEuen, Paul L. [2 ,3 ]
Ju, Long [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[3] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[4] Nanjing Univ, Sch Phys & Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CORRELATED STATES; DIRAC FERMIONS; INSULATOR; SPIN; FERROMAGNETISM; TRANSITION; MONOLAYER; VALLEY; MOTT;
D O I
10.1103/PhysRevLett.126.146402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monolayer graphene aligned with hexagonal boron nitride (h-BN) develops a gap at the charge neutrality point (CNP). This gap has previously been extensively studied by electrical transport through thermal activation measurements. Here, we report the determination of the gap size at the CNP of graphene/h-BN superlattice through photocurrent spectroscopy study. We demonstrate two distinct measurement approaches to extract the gap size. A maximum of similar to 14 meV gap is observed for devices with a twist angle of less than 1 degrees. This value is significantly smaller than that obtained from thermal activation measurements, yet larger than the theoretically predicted single-particle gap. Our results suggest that lattice relaxation and moderate electron-electron interaction effects may enhance the CNP gap in graphene/h-BN superlattice.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Graphene/h-BN Moire superlattice
    Lu Xiao-Bo
    Zhang Guang-Yu
    ACTA PHYSICA SINICA, 2015, 64 (07)
  • [2] Accurate Gap Determination in Monolayer and Bilayer Graphene/h-BN Moire Superlattices
    Kim, Hakseong
    Leconte, Nicolas
    Chittari, Bheema L.
    Watanabe, Kenji
    Taniguchi, Takashi
    MacDonald, Allan H.
    Jung, Jeil
    Jung, Suyong
    NANO LETTERS, 2018, 18 (12) : 7732 - 7741
  • [3] Emergence of orbital angular moment at van Hove singularity in graphene/h-BN moire superlattice
    Moriya, Rai
    Kinoshita, Kei
    Crosse, J. A.
    Watanabe, Kenji
    Taniguchi, Takashi
    Masubuchi, Satoru
    Moon, Pilkyung
    Koshino, Mikito
    Machida, Tomoki
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [4] Dual-Scale Stick-Slip Friction on Graphene/h-BN Moire Superlattice Structure
    Zhang, Shuai
    Yao, Quanzhou
    Chen, Lingxiu
    Jiang, Chengxin
    Ma, Tianbao
    Wang, Haomin
    Feng, Xi-Qiao
    Li, Qunyang
    PHYSICAL REVIEW LETTERS, 2022, 128 (22)
  • [5] Bridging Hubbard model physics and quantum Hall physics in trilayer graphene/h-BN moire superlattice
    Zhang, Ya-Hui
    Senthil, T.
    PHYSICAL REVIEW B, 2019, 99 (20)
  • [6] Moire Patterns as a Probe of Interplanar Interactions for Graphene on h-BN
    van Wijk, M. M.
    Schuring, A.
    Katsnelson, M. I.
    Fasolino, A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (13)
  • [7] Coulomb Drag in Graphene/h-BN/Graphene Moire<acute accent> Heterostructures
    Wang, Yueyang
    Xue, Hongxia
    Wang, Xiong
    Watanabe, Kenji
    Taniguchi, Takashi
    Ki, Dong-Keun
    PHYSICAL REVIEW LETTERS, 2024, 133 (18)
  • [8] Phonon thermal transport in graphene/h-BN superlattice monolayers
    Sha, Wenhao
    Dai, Xuan
    Chen, Siyu
    Guo, Fenglin
    DIAMOND AND RELATED MATERIALS, 2022, 129
  • [9] Photocurrent generation in graphene/h-BN heterostructures under solar illumination
    Cabrera, C., I
    Perez-Alvarez, R.
    Contreras-Solorio, D. A.
    Enciso, A.
    Hernandez, L.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 276
  • [10] Unconventional satellite resistance peaks in moire superlattice of h-BN/ AB-stacked tetralayer-graphene heterostructures
    Mukai, Fumiya
    Horii, Kota
    Ebisuoka, Ryoya
    Watanabe, Kenji
    Taniguchi, Takashi
    Yagi, Ryuta
    COMMUNICATIONS PHYSICS, 2021, 4 (01)