An Improved Feature Selection Algorithm with Conditional Mutual Information for Classification Problems

被引:0
|
作者
Palanichamy, Jaganathan [1 ]
Ramasamy, Kuppuchamy [1 ]
机构
[1] PSNA Coll Engn & Technol, Dept Comp Applicat, Dindigul, Tamil Nadu, India
关键词
Mutual Information; Conditional Mutual Information; Feature Selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of the feature selection is to eliminate insignificant features from entire dataset and simultaneously to keep the class discriminatory information for classification problems. Many feature selection algorithms have been proposed to measure the relevance and redundancy of the features and class variables. In this paper, we proposed an improved feature selection algorithm based on maximum relevance and minimum redundancy criterion. The relevance of a feature to the class variables are evaluated with mutual information and conditional mutual information is used to calculate the redundancy between the selected and the candidate features to each class variable. The experimental result is tested with five benchmarked datasets available from UCI Machine Learning Repository. The results shows the proposed algorithm is considered quite well when compared with some existing algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Feature selection algorithm for text classification based on improved mutual information
    丛帅
    张积宾
    徐志明
    王宇颖
    Journal of Harbin Institute of Technology(New series), 2011, (03) : 144 - 148
  • [2] Conditional mutual information based feature selection for classification task
    Novovicova, Jana
    Somol, Petr
    Haindl, Michal
    Pudil, Pavel
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2007, 4756 : 417 - 426
  • [3] FEATURE SELECTION ALGORITHM BASED ON CONDITIONAL DYNAMIC MUTUAL INFORMATION
    Wang Liping
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2015, 8 (01): : 316 - 337
  • [4] Feature Selection Algorithm for Dynamically Weighted Conditional Mutual Information
    Zhang Li
    Chen Xiaobo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (10) : 3028 - 3034
  • [5] An improved Fuzzy Mutual Information Feature Selection for Classification Systems
    Wang, Liwei
    Salem, Omar A. M.
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 119 - 124
  • [6] Feature selection using improved mutual information for text classification
    Novovicová, J
    Malík, A
    Pudil, P
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1010 - 1017
  • [7] Mutual information based input feature selection for classification problems
    Cang, Shuang
    Yu, Hongnian
    DECISION SUPPORT SYSTEMS, 2012, 54 (01) : 691 - 698
  • [8] A NOVEL FEATURE SELECTION ALGORITHM WITH SUPERVISED MUTUAL INFORMATION FOR CLASSIFICATION
    Palanichamy, Jaganathan
    Ramasamy, Kuppuchamy
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (04)
  • [9] Spam Feature Selection Based on the Improved Mutual Information Algorithm
    Liang Ting
    Yu Qingsong
    2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 67 - 70
  • [10] FEATURE SELECTION WITH WEIGHTED CONDITIONAL MUTUAL INFORMATION
    Celik, Ceyhun
    Bilge, Hasan Sakir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2015, 30 (04): : 585 - 596