Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane

被引:29
|
作者
De Prijck, Kristof [1 ]
De Smet, Nele [2 ]
Rymarczyk-Machal, Monika [2 ]
Van Driessche, Gonzalez [3 ]
Devreese, Bart [3 ]
Coenye, Tom [1 ]
Schacht, Etienne [2 ]
Nelis, Hans J. [1 ]
机构
[1] Univ Ghent, Lab Pharmaceut Microbiol, B-9000 Ghent, Belgium
[2] Univ Ghent, Lab Polymer Chem & Biomat, B-9000 Ghent, Belgium
[3] Univ Ghent, Lab Prot Biochem & Biomol Engn, B-9000 Ghent, Belgium
关键词
biofilm; Candida albicans; peptide; grafting; Modified Robbins Device; ANTIBIOTIC-RELEASING POLYMERS; BIOLOGICALLY-ACTIVE POLYMERS; ANTIMICROBIAL PEPTIDES; QUATERNARY AMMONIUM; HISTATIN-5; COPOLYMERS; PREVENTION; COATINGS; PROTEIN; DESIGN;
D O I
10.1080/08927010903501908
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In order to prevent biofilm formation by Candida albicans, several cationic peptides were covalently bound to polydimethylsiloxane (PDMS). The salivary peptide histatin 5 and two synthetic variants (Dhvar 4 and Dhvar 5) were used to prepare peptide functionalized PDMS using 4-azido-2,3,5,6-tetrafluoro-benzoic acid (AFB) as an interlinkage molecule. In addition, polylysine-, polyarginine-, and polyhistidine-PDMS surfaces were prepared. Dhvar 4 functionalized PDMS yielded the highest reduction of the number of C. albicans biofilm cells in the Modified Robbins Device. Amino acid analysis demonstrated that the amount of peptide immobilized on the modified disks was in the nanomole range. Poly-d-lysine PDMS, in particular the homopeptides with low molecular weight (2500 and 9600) showed the highest activity against C. albicans biofilms, with reductions of 93% and 91%, respectively. The results indicate that the reductions are peptide dependent.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [1] MODULATION OF THE BIOFILM FORMATION IN CANDIDA ALBICANS
    Paldrychova, M.
    Kolouchova, I
    Masak, J.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY (ICCT), 2018, : 81 - 85
  • [2] Biofilm formation by Candida albicans and Staphylococcus aureus
    Yang, L.
    Chen, D. Q.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 8 - 9
  • [3] Genetics and genomics of Candida albicans biofilm formation
    Nobile, Clarissa J.
    Mitchell, Aaron P.
    CELLULAR MICROBIOLOGY, 2006, 8 (09) : 1382 - 1391
  • [4] Biofilm of Candida albicans: formation, regulation and resistance
    Pereira, R.
    dos Santos Fontenelle, R. O.
    de Brito, E. H. S.
    de Morais, S. M.
    JOURNAL OF APPLIED MICROBIOLOGY, 2021, 131 (01) : 11 - 22
  • [5] Evaluating Candida albicans biofilm formation in silkworms
    Matsumoto, Yasuhiko
    Kurakado, Sanae
    Sugita, Takashi
    MEDICAL MYCOLOGY, 2021, 59 (02) : 201 - 205
  • [6] Thymol inhibits Candida albicans biofilm formation and mature biofilm
    Braga, Pier Carlo
    Culici, Maria
    Alfieri, Marina
    Dal Sasso, Monica
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2008, 31 (05) : 472 - 477
  • [7] Antifungal Properties of Biogenic Selenium Nanoparticles Functionalized with Nystatin for the Inhibition of Candida albicans Biofilm Formation
    Nile, Shivraj Hariram
    Thombre, Dipalee
    Shelar, Amruta
    Gosavi, Krithika
    Sangshetti, Jaiprakash
    Zhang, Weiping
    Sieniawska, Elwira
    Patil, Rajendra
    Kai, Guoyin
    MOLECULES, 2023, 28 (04):
  • [8] Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro
    Nava-Ortiz, Cesar A. B.
    Burillo, Guillermina
    Concheiro, Angel
    Bucio, Emilio
    Matthijs, Nele
    Nelis, Hans
    Coenye, Tom
    Alvarez-Lorenzo, Carmen
    ACTA BIOMATERIALIA, 2010, 6 (04) : 1398 - 1404
  • [9] Adherence and biofilm formation of non-Candida albicans Candida species
    Silva, Sonia
    Negri, Melyssa
    Henriques, Mariana
    Oliveira, Rosario
    Williams, David W.
    Azeredo, Joana
    TRENDS IN MICROBIOLOGY, 2011, 19 (05) : 241 - 247
  • [10] Inhibition of berberine hydrochloride on Candida albicans biofilm formation
    Xiaoxue Huang
    Mingyue Zheng
    Yuling Yi
    Anamica Patel
    Zhen Song
    Yan Li
    Biotechnology Letters, 2020, 42 : 2263 - 2269