Biochar increases 15N fertilizer retention and indigenous soil N uptake in a cotton-barley rotation system

被引:45
|
作者
Wang, Zhi [1 ]
Wang, Zhen [1 ]
Luo, Ying [1 ]
Zhan, Ya-nan [1 ]
Meng, Ya-li [1 ]
Zhou, Zhi-guo [1 ]
机构
[1] Nanjing Agr Univ, Coll Agr, 1 Weigang, Nanjing 210095, Jiangsu, Peoples R China
关键词
Inorganic N; Straw-biochar; Soil urea-N-15 retention; Root morphology; N uptake; Urea-N-15 recovery efficiency; GREENHOUSE-GAS EMISSIONS; NITROGEN USE EFFICIENCY; MICROBIAL BIOMASS; N-15-LABELED UREA; ADDING BIOCHAR; ROOT TRAITS; CROP; YIELD; PADDY; RICE;
D O I
10.1016/j.geoderma.2019.113944
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Biochar amendments can modify fertilizer nitrogen (N) availability in soil and crop N uptake. However, how biochar addition affects crop N uptake and fertilizer N recovery under various N levels is not yet well understood. To address this question, we conducted a two-season [cotton (Gossypium hirsutum L.)-barley (Hordewn vulgare L.) rotation] pot experiment that included four N fertilizer rates (0, 75, 150, and 300 kg N ha(-1), supplied as urea-N-15) combined with two straw-biochar rates (0 and 15 t ha(-1)). Soil properties, plant root morphology, N uptake, and biomass yield were studied. Biochar addition decreased soil inorganic N content but increased ureaN retention at cotton harvest, leading to 32% of the applied urea-N accumulating in soil compared with 27% without biochar, averaged across fertilizer N rates. Use of N-15 fertilizer showed that biochar increased plant uptake of indigenous soil N, not fertilizer N. An obvious decrease in urea-N-15 recovery induced by biochar was observed at 75 kg N ha(-1), but not at 150 or 300 kg N ha(-1). The efficiency of urea-N-15 recovery by plants ((NRE)-N-15, 34-45%), measured using the tracer method, was much lower than that measured using the traditional nonisotope method (NRE, 67-96%). At barley harvest, 2-5% of the urea-N, applied in the first season, was taken up by plants, and 12-19% remained in soils receiving biochar. We concluded that straw-biochar addition increased soil N-15 fertilizer retention and plant N uptake of indigenous soil N, not fertilizer N, and the increased indigenous soil N uptake persisted into the second cropping season.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Biochar amendment benefits 15N fertilizer retention and rhizosphere N enrichment in a maize-soil system
    Zhang, Jie
    Zhang, Lijuan
    Qiu, Shaojun
    [J]. Geoderma, 2022, 412
  • [2] Biochar amendment benefits 15N fertilizer retention and rhizosphere N enrichment in a maize-soil system
    Zhang, Jie
    Zhang, Lijuan
    Qiu, Shaojun
    [J]. GEODERMA, 2022, 412
  • [3] Continuous application of biochar increases 15N fertilizer translocation into soil organic nitrogen and crop uptake in drip-irrigated cotton field
    Ma, Lijuan
    Huo, Qiyu
    Tian, Qingyang
    Xu, Yuexuan
    Hao, Haibo
    Min, Wei
    Hou, Zhenan
    [J]. JOURNAL OF SOILS AND SEDIMENTS, 2023, 23 (03) : 1204 - 1216
  • [4] Continuous application of biochar increases 15N fertilizer translocation into soil organic nitrogen and crop uptake in drip-irrigated cotton field
    Lijuan Ma
    Qiyu Huo
    Qingyang Tian
    Yuexuan Xu
    Haibo Hao
    Wei Min
    Zhenan Hou
    [J]. Journal of Soils and Sediments, 2023, 23 : 1204 - 1216
  • [5] Effect of long-term fertilization on 15N uptake and retention in soil
    Zhao, Wei
    Liang, Bin
    Yang, Xueyen
    Gale, William
    Zhou, Jianbin
    [J]. JOURNAL OF PLANT NUTRITION, 2016, 39 (10) : 1431 - 1440
  • [6] Different soil particle size changes the 15N retention in soil and 15N utilization by maize
    Ma, Rui
    Dou, Sen
    Zhang, Yifeng
    Wu, Dong
    Ndzelu, Batande Sinovuyo
    Xie, Shuai
    YaLiHong, DiLiMuLaTi
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 843
  • [7] Increased soil moisture content increases plant N uptake and the abundance of 15N in plant biomass
    Feike A. Dijkstra
    Weixin Cheng
    [J]. Plant and Soil, 2008, 302 : 263 - 271
  • [8] Increased soil moisture content increases plant N uptake and the abundance of 15N in plant biomass
    Dijkstra, Feike A.
    Cheng, Weixin
    [J]. PLANT AND SOIL, 2008, 302 (1-2) : 263 - 271
  • [9] Uptake of 15N fertilizer in compost-amended soils
    L. J. Sikora
    N. K. Enkiri
    [J]. Plant and Soil, 2001, 235 : 65 - 73
  • [10] Uptake of 15N fertilizer in compost-amended soils
    Sikora, LJ
    Enkiri, NK
    [J]. PLANT AND SOIL, 2001, 235 (01) : 65 - 73