Unsupervised Deep Hashing via Binary Latent Factor Models for Large-scale Cross-modal Retrieval

被引:0
|
作者
Wu, Gengshen [1 ]
Lin, Zijia [2 ]
Han, Jungong [1 ]
Liu, Li [3 ]
Ding, Guiguang [4 ]
Zhang, Baochang [5 ]
Shen, Jialie [6 ]
机构
[1] Univ Lancaster, Lancaster LA1 4YW, England
[2] Microsoft Res, Beijing 100080, Peoples R China
[3] Inception Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[4] Tsinghua Univ, Beijing 100084, Peoples R China
[5] Beihang Univ, Beijing 100083, Peoples R China
[6] Northumbria Univ, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
来源
PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite its great success, matrix factorization based cross-modality hashing suffers from two problems: 1) there is no engagement between feature learning and binarization; and 2) most existing methods impose the relaxation strategy by discarding the discrete constraints when learning the hash function, which usually yields suboptimal solutions. In this paper, we propose a multimodal hashing framework, termed Unsupervised Deep Cross-Modal Hashing (UDCMH), for multimodal data search via integrating deep learning and matrix factorization with binary latent factor models. On one hand, our unsupervised deep learning framework enables the feature learning to be jointly optimized with the binarization. On the other hand, the hashing system based on the binary latent factor models can generate unified binary codes by solving a discrete-constrained objective function directly with no need for relaxation. Moreover, novel Laplacian constraints are incorporated into the objective function, which allow to preserve not only the nearest neighbors that are commonly considered in the literature but also the farthest neighbors of data. Extensive experiments on multiple datasets highlight the superiority of the proposed framework over several state-of-the-art baselines.
引用
收藏
页码:2854 / 2860
页数:7
相关论文
共 50 条
  • [1] Unsupervised Deep Cross-Modal Hashing by Knowledge Distillation for Large-scale Cross-modal Retrieval
    Li, Mingyong
    Wang, Hongya
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 183 - 191
  • [2] Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval
    Su, Shupeng
    Zhong, Zhisheng
    Zhang, Chao
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3027 - 3035
  • [3] Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval
    Liang Xie
    Lei Zhu
    Guoqi Chen
    Multimedia Tools and Applications, 2016, 75 : 9185 - 9204
  • [4] Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval
    Xie, Liang
    Zhu, Lei
    Chen, Guoqi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (15) : 9185 - 9204
  • [5] Joint-modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep Cross-modal Retrieval
    Liu, Song
    Qian, Shengsheng
    Guan, Yang
    Zhan, Jiawei
    Ying, Long
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1379 - 1388
  • [6] DEEP SEMANTIC ADVERSARIAL HASHING BASED ON AUTOENCODER FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Li, Mingyong
    Wang, Hongya
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,
  • [7] RETRACTED: Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model (Retracted Article)
    Li, Mingyong
    Li, Qiqi
    Tang, Lirong
    Peng, Shuang
    Ma, Yan
    Yang, Degang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [8] CLIP-based fusion-modal reconstructing hashing for large-scale unsupervised cross-modal retrieval
    Mingyong, Li
    Yewen, Li
    Mingyuan, Ge
    Longfei, Ma
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (01)
  • [9] CLIP-based fusion-modal reconstructing hashing for large-scale unsupervised cross-modal retrieval
    Li Mingyong
    Li Yewen
    Ge Mingyuan
    Ma Longfei
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [10] Deep Unsupervised Momentum Contrastive Hashing for Cross-modal Retrieval
    Lu, Kangkang
    Yu, Yanhua
    Liang, Meiyu
    Zhang, Min
    Cao, Xiaowen
    Zhao, Zehua
    Yin, Mengran
    Xue, Zhe
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 126 - 131