VOLUME ENTROPY OF HILBERT GEOMETRIES

被引:13
|
作者
Berck, Gautier [1 ]
Bernig, Andreas [2 ]
Vernicos, Constantin [3 ]
机构
[1] Dept Math, CH-1700 Fribourg, Switzerland
[2] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[3] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
关键词
metric geometry; Hilbert geometry; convex geometry; ABSOLUTE CONTINUITY; CURVATURE MEASURES;
D O I
10.2140/pjm.2010.245.201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that among all plane Hilbert geometries, the hyperbolic plane has maximal volume entropy. More precisely, we show that the volume entropy is bounded above by 2/(3 - d) <= 1, where d is the Minkowski dimension of the extremal set of K, and we construct an explicit example of a plane Hilbert geometry with noninteger volume entropy. In arbitrary dimension, the hyperbolic space has maximal entropy among all Hilbert geometries satisfying some additional technical hypothesis. To achieve this result, we construct a new projective invariant of convex bodies, similar to the centroaffine area.
引用
收藏
页码:201 / 225
页数:25
相关论文
共 50 条
  • [1] Asymptotic Volume in Hilbert Geometries
    Vernicos, Constantin
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (05) : 1431 - 1441
  • [2] On the entropy of Hilbert geometries of low regularities
    Cristina, Jan
    Merlin, Louis
    GEOMETRIAE DEDICATA, 2023, 217 (06)
  • [3] On the entropy of Hilbert geometries of low regularities
    Jan Cristina
    Louis Merlin
    Geometriae Dedicata, 2023, 217
  • [4] ENTROPY RIGIDITY AND HILBERT VOLUME
    Adeboye, Ilesanmi
    Bray, Harrison
    Constantine, David
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (04) : 1731 - 1744
  • [5] APPROXIMABILITY OF CONVEX BODIES AND VOLUME ENTROPY IN HILBERT GEOMETRY
    Vernicos, Constantin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (01) : 223 - 256
  • [6] Two properties of volume growth entropy in Hilbert geometry
    Bruno Colbois
    Patrick Verovic
    Geometriae Dedicata, 2014, 173 : 163 - 175
  • [7] Two properties of volume growth entropy in Hilbert geometry
    Colbois, Bruno
    Verovic, Patrick
    GEOMETRIAE DEDICATA, 2014, 173 (01) : 163 - 175
  • [8] FLAG-APPROXIMABILITY OF CONVEX BODIES AND VOLUME GROWTH OF HILBERT GEOMETRIES
    Vernicos, Constantin
    Walsh, Cormac
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (05): : 1297 - 1314
  • [9] Timelike Hilbert and Funk geometries
    Papadopoulos, Athanase
    Yamada, Sumio
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 67
  • [10] The Euclidean rank of Hilbert geometries
    Bletz-Siebert, Oliver
    Foertsch, Thomas
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (02) : 257 - 278