Generalized matched filters and univariate Neyman-Pearson detectors for image target detection

被引:2
|
作者
Caprari, RS [1 ]
机构
[1] Def Sci & Technol Org, Salisbury, SA 5108, Australia
关键词
image processing; linear discriminators; pattern recognition; statistical signal detection;
D O I
10.1109/18.857803
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
I derive two-stage, statistically suboptimal target detectors for images. The first, or transformation, stage is a "generalized matched filter" (GMF) that linearly transforms the input image. I propose three rational signal-to-noise-ratio criteria whose maximization yields the three GMFs. The second, or detection, stage is a univariate "Neyman-Pearson detector" (NPD), which executes a pointwise likelihood ratio test on GMF transformed images. Experiments on infrared and synthetic-aperture radar imagery compare GMF/NPDs with several established detectors.
引用
收藏
页码:1932 / 1937
页数:6
相关论文
共 50 条
  • [1] Design and performance analysis of Bayesian, Neyman-Pearson, and competitive Neyman-Pearson voice activity detectors
    Sangwan, Abhijeet
    Zhu, Wei-Ping
    Ahmad, M. Omair
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (09) : 4341 - 4353
  • [2] Advances in Neyman-Pearson Neural Detectors design
    Andina, D
    Torres-Alegre, S
    Vega-Corona, A
    Alvarez-Vellisco, A
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 249 - 256
  • [3] SOME PROPERTIES OF ADAPTIVE NEYMAN-PEARSON DETECTORS
    ESPOSITO, R
    MIDDLETON, D
    MULLEN, JA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1966, 20 (01) : 41 - +
  • [4] Signal detection in compound-Gaussian noise: Neyman-Pearson and CFAR detectors
    Conte, E
    De Maio, A
    Galdi, C
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 419 - 428
  • [5] Generalized compressive detection of stochastic signals using Neyman-Pearson theorem
    Wang, Ying-Gui
    Liu, Zheng
    Yang, Le
    Jiang, Wen-Li
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 : 111 - 120
  • [6] SADDLE POINT CONDITIONS AND GENERALIZED NEYMAN-PEARSON PROBLEM
    FRANCIS, RL
    MEEKS, HD
    AUSTRALIAN JOURNAL OF STATISTICS, 1972, 14 (01): : 73 - 78
  • [7] SOME DUALITY RELATIONSHIPS FOR GENERALIZED NEYMAN-PEARSON PROBLEM
    FRANCIS, RL
    WRIGHT, GP
    SIAM REVIEW, 1969, 11 (04) : 652 - &
  • [8] A generalized Neyman-Pearson lemma for g-probabilities
    Ji, Shaolin
    Zhou, Xun Yu
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 148 (3-4) : 645 - 669
  • [9] Generalized Neyman-Pearson lemma via convex duality
    Cvitanic, J
    Karatzas, I
    BERNOULLI, 2001, 7 (01) : 79 - 97
  • [10] AN APPLICATION OF THE GENERALIZED NEYMAN-PEARSON FUZZY TEST TO STOCHASTIC-SIGNAL DETECTION
    SON, JC
    SONG, I
    KIM, SY
    PARK, SI
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (05): : 1474 - 1481