Fisher encoding of differential fast point feature histograms for partial 3D object retrieval

被引:24
|
作者
Savelonas, Michalis A. [1 ,2 ]
Pratikakis, Ioannis [1 ,2 ]
Sfikas, Konstantinos [1 ,3 ]
机构
[1] ATHENA Res & Innovat Ctr, Branch Xanthi, GR-67100 Xanthi, Greece
[2] Democritus Univ Thrace, Dept Elect & Comp Engn, Bldg B, GR-67100 Xanthi, Greece
[3] NTNU, Dept Comp & Informat Sci, Trondheim, Norway
关键词
3D object retrieval; Partial matching; Local descriptors; Fisher encoding; DESCRIPTORS; IMAGES; WORDS;
D O I
10.1016/j.patcog.2016.02.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 50 条
  • [1] Fast Point Feature Histograms (FPFH) for 3D Registration
    Rusu, Radu Bogdan
    Blodow, Nico
    Beetz, Michael
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 1848 - 1853
  • [2] Histograms of Oriented Gradients for 3D Object Retrieval
    Scherer, Maximilian
    Walter, Michael
    Schreck, Tobias
    [J]. WSCG 2010: FULL PAPERS PROCEEDINGS, 2010, : 41 - +
  • [3] Persistent Point Feature Histograms for 3D Point Clouds
    Rusu, Radu Bogdan
    Marton, Zoltan Csaba
    Blodow, Nico
    Beetz, Michael
    [J]. IAS-10: INTELLIGENT AUTONOMOUS SYSTEMS 10, 2008, : 119 - 128
  • [4] Real-Time Object Classification in 3D Point Clouds Using Point Feature Histograms
    Himmelsbach, M.
    Luettel, T.
    Wuensche, H. -J.
    [J]. 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 994 - 1000
  • [5] EFFECTIVE FISHER VECTOR AGGREGATION FOR 3D OBJECT RETRIEVAL
    Boin, Jean-Baptiste
    Araujo, Andre
    Ballan, Lamberto
    Girod, Bernd
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1747 - 1751
  • [6] Rigid 3D Point Cloud Registration Based on Point Feature Histograms
    Wang, Xi
    Zhang, Xutang
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MACHINERY, ELECTRONICS AND CONTROL SIMULATION (MECS 2017), 2017, 138 : 543 - 550
  • [7] An overview of partial 3D object retrieval methodologies
    Michalis A. Savelonas
    Ioannis Pratikakis
    Konstantinos Sfikas
    [J]. Multimedia Tools and Applications, 2015, 74 : 11783 - 11808
  • [8] An overview of partial 3D object retrieval methodologies
    Savelonas, Michalis A.
    Pratikakis, Ioannis
    Sfikas, Konstantinos
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (24) : 11783 - 11808
  • [9] Point Cloud Encoding for 3D Building Model Retrieval
    Chen, Jyun-Yuan
    Lin, Chao-Hung
    Hsu, Po-Chi
    Chen, Chung-Hao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (02) : 337 - 345
  • [10] A 3D object retrieval method using segment thickness histograms and the connection of segments
    Lu, Yingliang
    Kaneko, Kunihiko
    Makinouchi, Akifumi
    [J]. ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2007, 4872 : 128 - +