A characterization of minimal varieties of Zp-graded PI algebras

被引:15
|
作者
Di Vincenzo, Onofrio Mario [1 ]
Tomaz da Silva, Viviane Ribeiro [2 ]
Spinelli, Ernesto [3 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, BR-30161970 Belo Horizonte, MG, Brazil
[3] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Graded algebras; Graded polynomial identities; G-exponent; Minimal varieties; Upper block triangular matrix algebras; GRADED POLYNOMIAL-IDENTITIES; CODIMENSION GROWTH; SUPERVARIETIES; EXISTENCE;
D O I
10.1016/j.jalgebra.2019.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic zero and p a prime. In the present paper it is proved that a variety of Z(p)-graded associative PI F-algebras of finite basic rank is minimal of fixed Z(p)-exponent d if, and only if, it is generated by an upper block triangular matrix algebra UTz(p) (A(1), ..., A(m)) equipped with a suitable elementary Z(p)-grading, whose diagonal blocks are isomorphic to Z(p)-graded simple algebras A(1), ..., A(m) satisfying dim(F)(A(1) circle plus ... circle plus A(m)) = d. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [1] Minimal Bosonization of Supersymmetry with Zp-graded Parity
    Chung, Won Sang
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (06): : 331 - 336
  • [2] On the Existence of the Graded Exponent for Finite Dimensional Zp-graded Algebras
    Di Vincenzo, Onofrio M.
    Nardozza, Vincenzo
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 271 - 284
  • [3] Minimal varieties of PI-algebras with graded involution
    Benanti, F. S.
    Di Vincenzo, O. M.
    Valenti, A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 459 - 507
  • [4] Zp-graded charge coherent states
    Chung, Won Sang
    [J]. MODERN PHYSICS LETTERS A, 2014, 29 (20)
  • [5] On the minimal varieties of PI-algebras graded by finite cyclic groups
    da Silva Pinto, Marcos Antonio
    Tomaz da Silva, Viviane Ribeiro
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5790 - 5814
  • [6] Minimal varieties of graded PI-algebras over abelian groups
    Argenti, Sebastiano
    Di Vincenzo, Onofrio Mario
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2441 - 2459
  • [7] Minimal varieties of associative PI (super)-algebras with respect to their (graded) exponent
    Di Vincenzo O.M.
    Spinelli E.
    [J]. São Paulo Journal of Mathematical Sciences, 2016, 10 (2) : 248 - 262
  • [8] On Zp-graded identities and cocharacters of the Grassmann algebra
    Di Vincenzo, Onofrio Mario
    Koshlukov, Plamen
    Tomaz da Silva, Viviane Ribeiro
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (01) : 343 - 356
  • [9] Fermion algebra with Zp-graded parity: Representation and thermodynamics
    Chung, Won Sang
    [J]. PHYSICS LETTERS A, 2015, 379 (03) : 77 - 82
  • [10] Zp-Graded Wigner Algebra : Coherent States and Thermodynamics
    Won Sang Chung
    Hassan Hassanabadi
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2254 - 2271