Improved generalized periods estimates over curves on Riemannian surfaces with non positive curvature

被引:3
|
作者
Wyman, Emmett L. [2 ]
Xi, Yakun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Eigenfunction estimates; generalized periods; negative curvature; CLOSED GEODESICS; EIGENFUNCTIONS; INTEGRALS; FORMULAS;
D O I
10.1515/forum-2020-0264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, on compact Riemannian surfaces of nonpositive curvature, the generalized periods, i.e. the v-th order Fourier coefficients of eigenfunctions e(lambda) over a closed smooth curve gamma which satisfies a natural curvature condition, go to 0 at the rate of O((log lambda) (-1/2)) in the high energy limit lambda -> infinity if 0 < vertical bar v vertical bar/lambda< 1 - delta for any fixed 0 < delta < 1. Our result implies, for instance, that the generalized periods over geodesic circles on any surfaces with nonpositive curvature would converge to zero at the rate of O((log lambda)(-1/2)).
引用
收藏
页码:789 / 807
页数:19
相关论文
共 50 条