NONLINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

被引:1
|
作者
Aberqi, A. [1 ]
Bennouna, J. [1 ]
Elmassoudi, M. [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Lab LAMA, Fes, Morocco
基金
新加坡国家研究基金会;
关键词
EXISTENCE; INEQUALITIES;
D O I
10.1007/s11253-022-02033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence result for a unilateral problem Au - div(Phi(x, u)) + H(x, u, del u) = mu, where Au = -div(a(x, u, del u)) is a Leray-Lions operator defined in the Sobolev-Orlicz space D(A) subset of W-0(1) L-M (Omega) , mu is an element of L-1 (Omega) W-1 E-(M) over bar(Omega), where M and (M) over bar are two complementary N-functions. The first and second lower terms Phi and H satisfy solely the growth condition and an arbitrary sign condition and, moreover, u >= zeta, where zeta is a measurable function.
引用
收藏
页码:1835 / 1864
页数:30
相关论文
共 50 条