VIGIL: A Python']Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling

被引:3
|
作者
Dioguardi, Fabio [1 ]
Massaro, Silvia [2 ,3 ]
Chiodini, Giovanni [3 ]
Costa, Antonio [3 ]
Folch, Arnau [4 ]
Macedonio, Giovanni [5 ]
Sandri, Laura [3 ]
Selva, Jacopo [3 ]
Tamburello, Giancarlo [3 ]
机构
[1] British Geol Survey, Lyell Ctr, Edinburgh, Midlothian, Scotland
[2] Univ Aldo Moro, Dipartimento Sci Terra & Geoambientali, Via E Orabona 4, I-70125 Bari, Italy
[3] Ist Nazl Geofis & Vulcanol, Sez Bologna, Via D Creti 12, I-40128 Bologna, Italy
[4] Geociencias Barcelona GEO3BCN CSIC, Barcelona, Spain
[5] Ist Nazl Geofis & Vulcanol, Osservatorio Vesuviano, Via Diocleziano 328, I-80124 Naples, Italy
关键词
Atmospheric gas dispersion; Volcanic gases; !text type='Python']Python[!/text] workflow; Diagnostic wind model; Probabilistic volcanic hazard assessment; SHALLOW LAYER MODEL; DENSE GAS; CAMPI-FLEGREI; EVENT TREE; HAZARD; RELEASE; HEALTH;
D O I
10.4401/ag-8796
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions. Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes. Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models' outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL.
引用
收藏
页数:14
相关论文
共 10 条
  • [1] PyBetVH: A Python']Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps
    Tonini, Roberto
    Sandri, Laura
    Thompson, Mary Anne
    [J]. COMPUTERS & GEOSCIENCES, 2015, 79 : 38 - 46
  • [2] Tyche: A Library for Probabilistic Reasoning and Belief Modelling in Python']Python
    Lamont, Padraig X.
    [J]. AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 381 - 396
  • [3] ST-HASSET for volcanic hazard assessment: A Python']Python tool for evaluating the evolution of unrest indicators
    Bartolini, Stefania
    Sobradelo, Rosa
    Marti, Joan
    [J]. COMPUTERS & GEOSCIENCES, 2016, 93 : 77 - 87
  • [4] PyLESA: A Python']Python modelling tool for planning-level Local, integrated, and smart Energy Systems Analysis
    Lyden, Andrew
    Flett, Graeme
    Tuohy, Paul G.
    [J]. SOFTWAREX, 2021, 14 (14)
  • [5] Development of python']python-FALL3D: a modified procedure for modelling volcanic ash dispersal in the Asia-Pacific region
    Bear-Crozier, A. N.
    Kartadinata, Nugraha
    Heriwaseso, Anjar
    Nielsen, Ole
    [J]. NATURAL HAZARDS, 2012, 64 (01) : 821 - 838
  • [6] DiadFit: : An open-source Python']Python3 tool for peak fitting of Raman data from silicate melts and volcanic fluids
    Wieser, Penny E.
    DeVitre, Charlotte L.
    [J]. VOLCANICA, 2024, 7 (01): : 335 - 359
  • [7] Modelling Optimal Capital Structure in Gas and Oil Sector by Applying Simulation Theory and Programming Language of Python']Python (Qatar Gas Transport Company)
    Kulikov, Andrey
    Alkader, Naief Alabed
    Panaedova, Galina
    Ogorodnikov, Aleksandr
    Rebeka, Evgenii
    [J]. ENERGIES, 2023, 16 (10)
  • [8] GalaPy: A highly optimised C plus plus /Python']Python spectral modelling tool for galaxies I. Library presentation and photometric fitting
    Ronconi, T.
    Lapi, A.
    Torsello, M.
    Bressan, A.
    Donevski, D.
    Pantoni, L.
    Behiri, M.
    Boco, L.
    Cimatti, A.
    D'Amato, Q.
    Danese, L.
    Giulietti, M.
    Perrotta, F.
    Silva, L.
    Talia, M.
    Massardi, M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 685
  • [9] An alternative CFD tool for gas dispersion modelling of heavy gas
    Fiates, Juliane
    Cruz Santos, Raphael Ribeiro
    Fernandes Neto, Fernando
    Francesconi, Artur Zaghini
    Simoes, Vinicius
    Vianna, Savio S. V.
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 44 : 583 - 593
  • [10] Development of python-FALL3D: a modified procedure for modelling volcanic ash dispersal in the Asia-Pacific region
    A. N. Bear-Crozier
    Nugraha Kartadinata
    Anjar Heriwaseso
    Ole Nielsen
    [J]. Natural Hazards, 2012, 64 : 821 - 838