共 50 条
Gain-of-Function Mutation of the SCN5A Gene Causes Exercise-Induced Polymorphic Ventricular Arrhythmias
被引:46
|作者:
Swan, Heikki
[1
]
Amarouch, Mohamed Yassine
[2
]
Leinonen, Jaakko
[4
]
Marjamaa, Annukka
[1
]
Kucera, Jan P.
[3
]
Laitinen-Forsblom, Pavi J.
[5
,6
]
Lahtinen, Annukka M.
[5
,6
]
Palotie, Aarno
[4
]
Kontula, Kimmo
[5
,6
]
Toivonen, Lauri
[1
]
Abriel, Hugues
[2
]
Widen, Elisabeth
[4
]
机构:
[1] Helsinki Univ Cent Hosp, Heart & Lung Ctr, Helsinki, Finland
[2] Univ Bern, Dept Clin Res, Bern, Switzerland
[3] Univ Bern, Dept Physiol, CH-3012 Bern, Switzerland
[4] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
[5] Univ Helsinki, Dept Med, Helsinki, Finland
[6] Helsinki Univ Cent Hosp, Helsinki, Finland
基金:
瑞士国家科学基金会;
关键词:
arrhythmia (heart rhythm disorders);
catecholaminergic polymorphic ventricular tachycardia;
exercise test;
genetic testing;
mutation;
SCN5A;
LONG QT SYNDROME;
CARDIAC SODIUM-CHANNEL;
BRUGADA-SYNDROME;
CA2+ SPARK;
IN-VITRO;
TACHYCARDIA;
MODEL;
DISEASE;
FAMILY;
ERYTHROMELALGIA;
D O I:
10.1161/CIRCGENETICS.114.000703
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Background-Over the past 15 years, a myriad of mutations in genes encoding cardiac ion channels and ion channel interacting proteins have been linked to a long list of inherited atrial and ventricular arrhythmias. The purpose of this study was to identify the genetic and functional determinants underlying exercise-induced polymorphic ventricular arrhythmia present in a large multigenerational family. Methods and Results-A large 4-generation family presenting with exercise-induced polymorphic ventricular arrhythmia, which was followed for 10 years, was clinically characterized. A novel SCN5A mutation was identified via whole exome sequencing and further functionally evaluated by patch-clamp studies using human embryonic kidney 293 cells. Of 37 living family members, a total of 13 individuals demonstrated >= 50 multiformic premature ventricular complexes or ventricular tachycardia upon exercise stress tests when sinus rate exceeded 99 +/- 17 beats per minute. Sudden cardiac arrest occurred in 1 individual during follow-up. Exome sequencing identified a novel missense mutation (p.I141V) in a highly conserved region of the SCN5A gene, encoding the Na(v)1.5 sodium channel protein that cosegregated with the arrhythmia phenotype. The mutation p.I141V shifted the activation curve toward more negative potentials and increased the window current, whereas action potential simulations suggested that it lowered the excitability threshold of cardiac cells. Conclusions-Gain-of-function of Na(v)1.5 may cause familial forms of exercise-induced polymorphic ventricular arrhythmias.
引用
收藏
页码:771 / U111
页数:17
相关论文