On measures of non-compactness and applications to embeddings

被引:1
|
作者
Yerzakova, NA [1 ]
机构
[1] Khabarovsk Tech Univ, Dept Math, R-680035 Khabarovsk, Russia
关键词
ideal space; regular space; Lebesgue space; Orlicz space; Sobolev space; embedding operator; weighted function space; measure of noncompactness;
D O I
10.1016/S0362-546X(96)00289-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:535 / 540
页数:6
相关论文
共 50 条
  • [1] Measures of non-compactness of classical embeddings of Sobolev spaces
    Hencl, S
    [J]. MATHEMATISCHE NACHRICHTEN, 2003, 258 : 28 - 43
  • [2] Maximal Non-compactness of Sobolev Embeddings
    Jan Lang
    Vít Musil
    Miroslav Olšák
    Luboš Pick
    [J]. The Journal of Geometric Analysis, 2021, 31 : 9406 - 9431
  • [3] Maximal Non-compactness of Sobolev Embeddings
    Lang, Jan
    Musil, Vit
    Olsak, Miroslav
    Pick, Lubos
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 9406 - 9431
  • [4] APPLICATIONS OF ONE INEQUALITY TO MEASURES OF NON-COMPACTNESS AND NARROW OPERATORS
    Erzakova, Nina A.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 249 - 260
  • [5] INTERPOLATION THEORY AND MEASURES OF NON-COMPACTNESS
    TEIXEIRA, MF
    EDMUNDS, DE
    [J]. MATHEMATISCHE NACHRICHTEN, 1981, 104 : 129 - 135
  • [6] A NOTE ON PROBABILISTIC MEASURES OF NON-COMPACTNESS
    TAN, DH
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (04): : 283 - 288
  • [7] Different degrees of non-compactness for optimal Sobolev embeddings
    Lang, Jan
    Mihula, Zdenek
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (10)
  • [8] Dentability indices with respect to measures of non-compactness
    Raja, M.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) : 273 - 286
  • [9] Measures of non-compactness of operators on Banach lattices
    Troitsky, VG
    [J]. POSITIVITY, 2004, 8 (02) : 165 - 178
  • [10] Measures of Non-compactness of Operators on Banach Lattices
    Vladimir G. Troitsky
    [J]. Positivity, 2004, 8 : 165 - 178