Highly regular architectures for finite field computation using redundant basis

被引:0
|
作者
Wu, HP [1 ]
Hasan, MA
Blake, IF
机构
[1] IIT, Dept ECE, Chicago, IL 60616 USA
[2] Univ Waterloo, Dept ECE, Waterloo, ON N2L 3G1, Canada
[3] HP Lab, Palo Alto, CA 94304 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, an extremely simple and highly regular architecture for finite field multiplier using redundant basis is presented, where redundant basis is a new basis taking advantage of the elegant multiplicative structure of the set of primitive n(th) roots of unity over F-2 that forms a basis of F-2m over F-2. The architecture has an important feature of implementation complexity trade-off which enables the multiplier to be implemented in a partial parallel fashion. The squaring operation using the redundant basis is simply a permutation of the coefficients. We also show that with redundant basis the inversion problem is equivalent to solving a set of linear equations with a circulant matrix. The basis appear to be suitable for hardware implementation of elliptic curve cryptosystems.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [1] High-Throughput Finite Field Multipliers Using Redundant Basis for FPGA and ASIC Implementations
    Xie, Jiafeng
    Meher, Pramod Kumar
    Mao, Zhi-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (01) : 110 - 119
  • [2] Finite field multiplier using redundant representation
    Wu, HP
    Hasan, MA
    Blake, IF
    Gao, SH
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (11) : 1306 - 1316
  • [3] An Efficient Finite Field Multiplier Using Redundant Representation
    Namin, Ashkan Hosseinzadeh
    Wu, Huapeng
    Ahmadi, Majid
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2012, 11 (02)
  • [4] A new finite-field multiplier using redundant representation
    Namin, Ashkan Hosseinzadeh
    Wu, Huapeng
    Ahmadi, Majid
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (05) : 716 - 720
  • [5] MODULAR HIGHLY-PARALLEL COMPUTATION AND ARCHITECTURES
    KOTOV, VE
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 342 : 147 - 155
  • [6] REGULAR IDENTITIES AND FINITE BASIS PROPERTY
    LAKSER, H
    PADMANAB.R
    PLATT, CR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A528 - A528
  • [7] DFT Computation Using Gauss-Eisenstein Basis: FFT Algorithms and VLSI Architectures
    Coelho, Diego F. G.
    Cintra, Renato J.
    Rajapaksha, Nilanka
    Mendis, Gihan J.
    Madanayake, Arjuna
    Dimitrov, Vassil S.
    IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (08) : 1442 - 1448
  • [8] Magnetic Field Computation Using Compact Support Radial Basis
    Das, Rajeev
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) : 1362 - 1365
  • [9] HIGHLY ACCURATE COMPUTATION OF FIELD QUANTITIES AND FORCES BY SUPERCONVERGENCE IN FINITE-ELEMENTS
    KASPER, M
    FRANZ, J
    IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) : 1424 - 1427
  • [10] High Speed VLSI Implementation of a Finite Field Multiplier Using Redundant Representation
    Namin, Ashkan Hosseinzadeh
    Leboeuf, Karl
    Muscedere, Roberto
    Wu, Huapeng
    Ahmadi, Majid
    2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 161 - 164