Convex bodies in exceptional relative positions

被引:6
|
作者
Schneider, R [1 ]
机构
[1] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
关键词
D O I
10.1112/S0024610799007978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two convex bodies K and K' in Euclidean space E-n can be said to be in exceptional relative position if they have a common boundary point at which the linear hulls of their normal cones have a non-trivial intersection. It is proved that the set of rigid motions g for which K and gK' are in exceptional relative position is of Haar measure zero. A similar result holds true if 'exceptional relative position' is defined via common supporting hyperplanes. Both results were conjectured by S. Glasauer; they have applications in integral geometry.
引用
收藏
页码:617 / 629
页数:13
相关论文
共 50 条
  • [1] RELATIVE ENTROPIES FOR CONVEX BODIES
    Jenkinson, Justin
    Werner, Elisabeth M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 2889 - 2906
  • [2] Extremal problems and isotropic positions of convex bodies
    A. A. Giannopoulos
    V. D. Milman
    [J]. Israel Journal of Mathematics, 2000, 117 : 29 - 60
  • [3] Extremal problems and isotropic positions of convex bodies
    Giannopoulos, AA
    Milman, VD
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2000, 117 (1) : 29 - 60
  • [4] RELATIVE CLASSIFICATION OF SMOOTH CONVEX BODIES
    DOBROWOLSKI, T
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1977, 25 (03): : 309 - 312
  • [5] Some New Positions of Maximal Volume of Convex Bodies
    Shiri Artstein-Avidan
    Eli Putterman
    [J]. La Matematica, 2022, 1 (4): : 765 - 808
  • [6] DISTANCES BETWEEN CLASSICAL POSITIONS OF CENTRALLY SYMMETRIC CONVEX BODIES
    Markessinis, E.
    Valettas, P.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (01): : 187 - 211
  • [7] Positions of convex bodies associated to extremal problems and isotropic measures
    Bastero, J
    Romance, M
    [J]. ADVANCES IN MATHEMATICS, 2004, 184 (01) : 64 - 88
  • [8] RELATIVE FREQUENCIES OF RANDOM INTERCEPTS THROUGH CONVEX BODIES
    WARREN, R
    NAUMOVICH, N
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 1977, 110 (JUL): : 113 - 120
  • [9] Comparing the M-position with some classical positions of convex bodies
    Markessinis, E.
    Paouris, G.
    Saroglou, Ch
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 : 131 - 152
  • [10] The Dependence of a Sonic Boom on the Relative Positions of Bodies in a Supersonic Flow
    Potapkin, A. V.
    Moskvichev, D. Yu.
    [J]. TECHNICAL PHYSICS LETTERS, 2020, 46 (03) : 295 - 298