Amplitude of climatic changes in Qinghai-Tibetan Plateau

被引:154
|
作者
Yao, TD [1 ]
Liu, XD
Wang, NL
Shi, YF
机构
[1] Chinese Acad Sci, Lanzhou Inst Glaciol & Geocryol, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Atmospher Phys Highlands, Lanzhou 730000, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2000年 / 45卷 / 13期
关键词
Qinghai-Tibetan Plateau; high elevation region; abrupt climatic change; amplitude of climatic change; climatic sensitivity;
D O I
10.1007/BF02886087
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
On the basis of ice core and meteorological data from the Qinghai-Tibetan (Q-T) Plateau, this article focuses on the discussion of the problems related to the sensitivity of temporal and spatial changes of the climate in high-altitude regions, particularly in the Q-T Plateau. The features of abrupt climatic changes of the past 100 ka, 2 000 a and recent years indicate that the amplitude of these changes in the Q-T Plateau was obviously larger than that in low-altitude regions. The scope of temperature change above 6 000 m in the Q-T Plateau between glacial and interglacial stages could reach over 10 degrees C, but only about 4 degrees C in low-elevation regions close to sea level. During the last 2 000 a, the amplitude of temperature changes at Guliya (over 6 000 m a.s.l.) in the Q-T Plateau reached 7 degrees C, in comparison with 2 degrees C in eastern China at low altitude. In the present age, apparent differences of climatic warming have been observed in the Q-T Plateau, indicating that the warming in high-elevation regions is much higher than that in low-elevation regions. The temperature in over 3 500 m regions of the Q-T Plateau have been increasing at a rate of 0.25x10 (1)/a in recent 30 years, but almost no change has taken place in the regions below 500 m. Thus, we concluded that high-altitude regions are more sensitive to climatic changes than the low-altitude regions.
引用
收藏
页码:1236 / 1243
页数:8
相关论文
共 50 条
  • [1] Amplitude of climatic changes in Qinghai-Tibetan Plateau
    YAO Tandong
    2. Lanzhou Institute of Atmospheric Physics Over Highlands
    [J]. Science Bulletin, 2000, (13) : 1236 - 1243
  • [2] Plant phenology changes and drivers on the Qinghai-Tibetan Plateau
    Shen, Miaogen
    Wang, Shiping
    Jiang, Nan
    Sun, Jianping
    Cao, Ruyin
    Ling, Xiaofang
    Fang, Bo
    Zhang, Lei
    Zhang, Lihao
    Xu, Xiyan
    Lv, Wangwang
    Li, Baolin
    Sun, Qingling
    Meng, Fandong
    Jiang, Yuhao
    Dorji, Tsechoe
    Fu, Yongshuo
    Iler, Amy
    Vitasse, Yann
    Steltzer, Heidi
    Ji, Zhenming
    Zhao, Wenwu
    Piao, Shilong
    Fu, Bojie
    [J]. NATURE REVIEWS EARTH & ENVIRONMENT, 2022, 3 (10) : 633 - 651
  • [3] Grassland changes and adaptive management on the Qinghai-Tibetan Plateau
    Wang, Yanfen
    Lv, Wangwang
    Xue, Kai
    Wang, Shiping
    Zhang, Lirong
    Hu, Ronghai
    Zeng, Hong
    Xu, Xingliang
    Li, Yaoming
    Jiang, Lili
    Hao, Yanbin
    Du, Jianqing
    Sun, Jianping
    Dorji, Tsechoe
    Piao, Shilong
    Wang, Changhui
    Luo, Caiyun
    Zhang, Zhenhua
    Chang, Xiaofeng
    Zhang, Mingming
    Hu, Yigang
    Wu, Tonghua
    Wang, Jinzhi
    Li, Bowen
    Liu, Peipei
    Zhou, Yang
    Wang, A.
    Dong, Shikui
    Zhang, Xianzhou
    Gao, Qingzhu
    Zhou, Huakun
    Shen, Miaogen
    Wilkes, Andreas
    Miehe, Georg
    Zhao, Xinquan
    Niu, Haishan
    [J]. NATURE REVIEWS EARTH & ENVIRONMENT, 2022, 3 (10) : 668 - 683
  • [4] Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau
    Zhou, Guanghao
    Liu, Wenhui
    Xie, Changwei
    Song, Xianteng
    Zhang, Qi
    Li, Qingpeng
    Liu, Guangyue
    Li, Qing
    Luo, Bingnan
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] The coupling mechanism of the glacial and the climatic changes of the southeast Nyanqingtanggula Mountain on the Qinghai-Tibetan Plateau, China
    Wang, XL
    Zou, SB
    Zhou, SZ
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4112 - 4114
  • [6] A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau
    Liu, KB
    Yao, ZJ
    Thompson, LG
    [J]. GEOLOGY, 1998, 26 (02) : 135 - 138
  • [7] A comparison of climatic change between Svalbard in Arctic and the Qinghai-Tibetan Plateau
    康世昌
    姚檀栋
    秦大河
    [J]. Advances in Polar Science, 1998, (01) : 41 - 50
  • [8] Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau
    Lu, Ruijie
    Jia, Feifei
    Gao, Shangyu
    Shang, Yuan
    Li, Jinfeng
    Zhao, Chao
    [J]. PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2015, 430 : 1 - 10
  • [9] Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau
    Chen, Huai
    Ju, Peijun
    Zhang, Jiang
    Wang, Yuanyun
    Zhu, Qiu'an
    Yan, Liang
    Kang, Xiaoming
    He, Yixin
    Zeng, Yuan
    Hao, Yanbin
    Wang, Yanfen
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2406 - 2418
  • [10] Satellite Observed Environmental Changes over the Qinghai-Tibetan Plateau
    Tseng, Kuo-Hsin
    Shum, C. K.
    Lee, Hyongki
    Duan, Jianbin
    Kuo, Chungyen
    Song, Shuli
    Zhu, Wenyao
    [J]. TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2011, 22 (02): : 229 - 239