Joint Hierarchical Category Structure Learning and Large-Scale Image Classification

被引:44
|
作者
Qu, Yanyun [1 ]
Lin, Li [1 ]
Shen, Fumin [2 ]
Lu, Chang [1 ]
Wu, Yang [3 ]
Xie, Yuan [4 ]
Tao, Dacheng [5 ]
机构
[1] Xiamen Univ, Dept Comp Sci, Xiamen 361005, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[3] Nara Inst Sci & Technol, Inst Res Initiat, Nara 6300192, Japan
[4] Chinese Acad Sci, Control Inst Automat, Res Ctr Precis Sensing, Beijing 100190, Peoples R China
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Hierarchical learning; large-scale image classification; deep features; visual tree; N-best path; FEATURE-EXTRACTION; TREE CLASSIFIERS; DICTIONARY; EFFICIENT; SPARSE; REPRESENTATION; FEATURES; MODEL;
D O I
10.1109/TIP.2016.2615423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the scalable image classification problem with a large number of categories. Hierarchical visual data structures are helpful for improving the efficiency and performance of large-scale multi-class classification. We propose a novel image classification method based on learning hierarchical inter-class structures. Specifically, we first design a fast algorithm to compute the similarity metric between categories, based on which a visual tree is constructed by hierarchical spectral clustering. Using the learned visual tree, a test sample label is efficiently predicted by searching for the best path over the entire tree. The proposed method is extensively evaluated on the ILSVRC2010 and Caltech 256 benchmark datasets. The experimental results show that our method obtains significantly better category hierarchies than other state-of-the-art visual treebased methods and, therefore, much more accurate classification.
引用
收藏
页码:4331 / 4346
页数:16
相关论文
共 50 条
  • [1] Hierarchical Classification for Large-Scale Learning
    Wang, Boshi
    Barbu, Adrian
    [J]. ELECTRONICS, 2023, 12 (22)
  • [2] Hierarchical learning of large-margin metrics for large-scale image classification
    Lei, Hao
    Mei, Kuizhi
    Xin, Jingmin
    Dong, Peixiang
    Fan, Jianping
    [J]. NEUROCOMPUTING, 2016, 208 : 46 - 58
  • [3] Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection
    Fan, Jianping
    Zhang, Ji
    Mei, Kuizhi
    Peng, Jinye
    Gao, Ling
    [J]. PATTERN RECOGNITION, 2015, 48 (05) : 1673 - 1687
  • [4] Hierarchical Learning for Large-Scale Image Classification via CNN and Maximum Confidence Path
    Lu, Chang
    Qu, Yanyun
    Shi, Cuiting
    Fan, Jianping
    Wu, Yang
    Wang, Hanzi
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT II, 2015, 9315 : 236 - 245
  • [5] Hierarchical learning of multi-task sparse metrics for large-scale image classification
    Zheng, Yu
    Fan, Jianping
    Zhang, Ji
    Gao, Xinbo
    [J]. PATTERN RECOGNITION, 2017, 67 : 97 - 109
  • [6] Joint Dictionary Learning via Split Bregman Iteration for Large-Scale Image Classification
    Qu, Yanyun
    Li, Hanqian
    Zhang, Yan
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 296 - 305
  • [7] Large-Scale Image Classification Using Active Learning
    Alajlan, Naif
    Pasolli, Edoardo
    Melgani, Farid
    Franzoso, Andrea
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 259 - 263
  • [8] Good Practice in Large-Scale Learning for Image Classification
    Akata, Zeynep
    Perronnin, Florent
    Harchaoui, Zaid
    Schmid, Cordelia
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 507 - 520
  • [9] Cost-sensitive Learning for Large-scale Hierarchical Classification
    Chen, Jianfu
    Warren, David
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1351 - 1360
  • [10] CNN-RNN: a large-scale hierarchical image classification framework
    Guo, Yanming
    Liu, Yu
    Bakker, Erwin M.
    Guo, Yuanhao
    Lew, Michael S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 10251 - 10271