Resisting Distributed Backdoor Attacks in Federated Learning: A Dynamic Norm Clipping Approach

被引:10
|
作者
Guo, Yifan [1 ]
Wang, Qianlong [2 ]
Ji, Tianxi [1 ]
Wang, Xufei [1 ]
Li, Pan [1 ]
机构
[1] Case Western Reserve Univ, Cleveland, OH 44106 USA
[2] Towson Univ, Towson, MD 21252 USA
关键词
Federated learning; distributed backdoor attacks; dynamic norm clipping;
D O I
10.1109/BigData52589.2021.9671910
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advance in artificial intelligence and high-dimensional data analysis, federated learning (FL) has emerged to allow distributed data providers to collaboratively learn without direct access to local sensitive data. However, limiting access to individual provider's data inevitably incurs security issues. For instance, backdoor attacks, one of the most popular data poisoning attacks in FL, severely threaten the integrity and utility of the FL system. In particular, backdoor attacks launched by multiple collusive attackers, i.e., distributed backdoor attacks, can achieve high attack success rates and are hard to detect. Existing defensive approaches, like model inspection or model sanitization, often require to access a portion of local training data, which renders them inapplicable to the FL scenarios. Recently, the norm clipping approach is developed to effectively defend against distributed backdoor attacks in FL, which does not rely on local training data. However, we discover that adversaries can still bypass this defense scheme through robust training due to its unchanged norm clipping threshold. In this paper, we propose a novel defense scheme to resist distributed backdoor attacks in FL. Particularly, we first identify that the main reason for the failure of the norm clipping scheme is its fixed threshold in the training process, which cannot capture the dynamic nature of benign local updates during the global model's convergence. Motivated by it, we devise a novel defense mechanism to dynamically adjust the norm clipping threshold of local updates. Moreover, we provide the convergence analysis of our defense scheme. By evaluating it on four non-IID public datasets, we observe that our defense scheme effectively can resist distributed backdoor attacks and ensure the global model's convergence. Noticeably, our scheme reduces the attack success rates by 84.23% on average compared with existing defense schemes.
引用
下载
收藏
页码:1172 / 1182
页数:11
相关论文
共 50 条
  • [1] Distributed Backdoor Attacks in Federated Learning Generated by DynamicTriggers
    Wang, Jian
    Shen, Hong
    Liu, Xuehua
    Zhou, Hua
    Li, Yuli
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 178 - 193
  • [2] Resisting Backdoor Attacks in Federated Learning via Bidirectional Elections and Individual Perspective
    Qin, Zhen
    Chen, Feiyi
    Zhi, Chen
    Yan, Xueqiang
    Deng, Shuiguang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14677 - 14685
  • [3] FedMC: Federated Learning with Mode Connectivity Against Distributed Backdoor Attacks
    Wang, Weiqi
    Zhang, Chenhan
    Liu, Shushu
    Tang, Mingjian
    Liu, An
    Yu, Shui
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4873 - 4878
  • [4] MITDBA: Mitigating Dynamic Backdoor Attacks in Federated Learning for IoT Applications
    Wang, Yongkang
    Zhai, Di-Hua
    Han, Dongyu
    Guan, Yuyin
    Xia, Yuanqing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06): : 10115 - 10132
  • [5] Optimally Mitigating Backdoor Attacks in Federated Learning
    Walter, Kane
    Mohammady, Meisam
    Nepal, Surya
    Kanhere, Salil S.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2949 - 2963
  • [7] An Investigation of Recent Backdoor Attacks and Defenses in Federated Learning
    Chen, Qiuxian
    Tao, Yizheng
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 262 - 269
  • [8] Towards defending adaptive backdoor attacks in Federated Learning
    Yang, Han
    Gu, Dongbing
    He, Jianhua
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5078 - 5084
  • [9] Efficient and Secure Federated Learning Against Backdoor Attacks
    Miao, Yinbin
    Xie, Rongpeng
    Li, Xinghua
    Liu, Zhiquan
    Choo, Kim-Kwang Raymond
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4619 - 4636
  • [10] Towards Practical Backdoor Attacks on Federated Learning Systems
    Shi C.
    Ji S.
    Pan X.
    Zhang X.
    Zhang M.
    Yang M.
    Zhou J.
    Yin J.
    Wang T.
    IEEE Transactions on Dependable and Secure Computing, 2024, 21 (06) : 1 - 16