Ultrasound backscatter characterization by using Markov random field model

被引:0
|
作者
Bouhlel, N. [1 ]
Sevestre-Ghalila, S. [1 ]
Jaidane, M. [1 ]
Graffigne, C. [1 ]
机构
[1] Univ Paris 05, Lab MAP5, F-75006 Paris, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper evaluates a K-Markov random field model for retrieving information about backscatter characteristics, especially regularity spacing scatterers in simulated ultrasound image. The model combines a statistical K-distribution that describes the envelope of backscattered echo and spatial interaction given by Markov random field (MRF). Parameters estimated by the conditional least squares (CLS) estimation method on simulated radio-frequency (RF) envelope image show that the interaction parameters measure the degree of the randomness of the scatterers.
引用
收藏
页码:2372 / 2375
页数:4
相关论文
共 50 条
  • [1] Nakagami Markov random field as texture model for ultrasound RF envelope image
    Bouhlel, N.
    Sevestre-Ghalila, S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (06) : 535 - 544
  • [2] A new Markov random field model based on κ-distribution for textured ultrasound image
    Bouhlel, N
    Sevestre, S
    Rajhi, H
    Hamza, R
    MEDICAL IMAGING 2004: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2004, 5373 : 363 - 372
  • [3] Statistical characterization of clutter scenes based on a Markov random field model
    Kasetkasem, T
    Varshney, PK
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (03) : 1035 - 1050
  • [4] Markov random field texture model for automatic breast parenchyma characterization
    Vargas-Voracek, R
    Floyd, CE
    RADIOLOGY, 1998, 209P : 355 - 355
  • [5] Image segmentation using a unified Markov random field model
    Chen, Xiaohui
    Zheng, Chen
    Yao, Hongtai
    Wang, Bingxue
    IET IMAGE PROCESSING, 2017, 11 (10) : 860 - 869
  • [6] Document ranking refinement using a Markov random field model
    Villatoro, Esau
    Juarez, Antonio
    Montes, Manuel
    Villasenor, Luis
    Sucar, L. Enrioue
    NATURAL LANGUAGE ENGINEERING, 2012, 18 : 155 - 185
  • [7] Strong Markov random field model
    Paget, R
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (03) : 408 - 413
  • [8] Fully Automated Model-based Prostate Boundary Segmentation using Markov Random Field in Ultrasound images
    Vafaie, Rasa
    Alirezaie, Javad
    Babyn, Paul
    2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA), 2012,
  • [9] Data-Driven Site Characterization Based on a Markov Random Field Model
    Shuku, Takayuki
    GEO-RISK 2023: INNOVATION IN DATA AND ANALYSIS METHODS, 2023, 345 : 79 - 85
  • [10] Hierarchical classification of SAR data using a markov random field model
    Crawford, Melba M.
    Ricard, Michael R.
    Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, : 81 - 86