Numerical method for weights adjustment in minimax multi-model LQ-control

被引:6
|
作者
Poznyak, Alexander
Bejarano, Francisco Javier
Fridman, Leonid
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Automat Control, Mexico City 07000, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, DEP FI, Mexico City 04510, DF, Mexico
来源
关键词
minimax control; linear quadratic problem; numerical methods;
D O I
10.1002/oca.805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimax linear quadratic problem, where 'max' is taken over a finite set of indices (models) and 'min' is taken over the set of admissible controls, is considered. The solution is obtained by the robust optimal control application. The control turns out to be a linear combination of the controls optimal for each individual model. This paper develops a numerical method for the optimal weights adjustment. An example shows a quick convergence of the proposed procedure. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 50 条
  • [1] Multi-model LQ-constrained min-max control
    Garcia, Pablo
    Poznyak, Alexander
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (02): : 359 - 380
  • [2] Robust Nash Equilibrium in multi-model LQ differential games:: Analysis and extraproximal numerical procedure
    Jimenez-Lizarraga, Manuel
    Poznyak, Alex
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2007, 28 (02): : 117 - 141
  • [3] Main steam temperature multi-model prediction and control method based on a multi-model set
    Liu, Ji-Zhen
    Yue, Jun-Hong
    Tan, Wen
    Reneng Dongli Gongcheng/Journal of Engineering for Thermal Energy and Power, 2008, 23 (04): : 395 - 398
  • [4] Robust maximum principle for multi-model LQ-problem
    Poznyak, AS
    Duncan, TE
    Pasik-Duncan, B
    Boltyanski, VG
    INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (15) : 1170 - 1177
  • [5] Multi-model partitioning the multi-model evolutionary framework for intelligent control
    Lainiotis, DG
    PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2000, : P15 - P20
  • [6] Model set optimization method for complex plant multi-model control
    Xu, Jiansheng
    Hou, Xiong
    Wang, Yongji
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1880 - +
  • [7] Multi-Model Repetitive Control
    Zhou Keliang
    Lu Wenzhou
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2219 - 2222
  • [8] A multi-model structure for model predictive control
    Di Palma, F
    Magni, L
    ANNUAL REVIEWS IN CONTROL, 2004, 28 (01) : 47 - 52
  • [9] Multi-model decoupled generic model control
    Duvall, M
    Riggs, JB
    Lee, P
    CONTROL ENGINEERING PRACTICE, 2001, 9 (05) : 471 - 481
  • [10] Multi-model decoupled generic model control
    Riggs, JB
    Lee, PL
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2488 - 2492