Estimating expectation values using approximate quantum states

被引:15
|
作者
Paini, Marco [1 ]
Kalev, Amir [2 ]
Padilha, Dan [1 ]
Ruck, Brendan [3 ]
机构
[1] Rigetti Comp, 138 Holborn, London EC1N 2SW, England
[2] Univ Southern Calif, Informat Sci Inst, Arlington, VA 22203 USA
[3] Rigetti Comp, 2919 Seventh St, Berkeley, CA 94710 USA
来源
QUANTUM | 2021年 / 5卷
基金
美国国家科学基金会;
关键词
D O I
10.22331/q-2021-03-16-413
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an approximate description of an N-qubit state, which contains sufficient information to estimate the expectation value of any observable to a precision that is upper bounded by the ratio of a suitably-defined seminorm of the observable to the square root of the number of the system's identical preparations M, with no explicit dependence on N. We describe an operational procedure for constructing the approximate description of the state that requires, besides the quantum state preparation, only single-qubit rotations followed by single-qubit measurements. We show that following this procedure, the cardinality of the resulting description of the state grows as 3MN. We test the proposed method on Rigetti's quantum processor unit with 12, 16 and 25 qubits for random states and random observables, and find an excellent agreement with the theory, despite experimental errors.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Approximate formulas for expectation values using coherent states
    Foggiatto, A. L.
    Angelo, R. M.
    Ribeiro, A. D.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (10):
  • [2] Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values
    Huggins, William J.
    Wan, Kianna
    McClean, Jarrod
    Brien, Thomas E. O. '
    Wiebe, Nathan
    Babbush, Ryan
    PHYSICAL REVIEW LETTERS, 2022, 129 (24)
  • [3] Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states
    Bonet-Luz, Esther
    Tronci, Cesare
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189):
  • [4] RANDOM MATRICES WITH PRESCRIBED EIGENVALUES AND EXPECTATION VALUES FOR RANDOM QUANTUM STATES
    Meckes, Elizabeth S.
    Meckes, Mark W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (07) : 5141 - 5170
  • [5] Quantum geometry of expectation values
    Song, Chaoming
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [6] EXPECTATION VALUES IN QUANTUM COSMOLOGY
    JORDAN, RD
    PHYSICAL REVIEW D, 1987, 36 (12): : 3604 - 3613
  • [7] Expectation values from the single-layer quantum approximate optimization algorithm on Ising problems
    Ozaeta, Asier
    van Dam, Wim
    McMahon, Peter L.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)
  • [8] RIGOROUS AND APPROXIMATE RELATIONS BETWEEN EXPECTATION VALUES OF ATOMS
    TAL, Y
    LEVY, M
    JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (07): : 4009 - 4013
  • [9] SOME APPROXIMATE RELATIONS BETWEEN EXPECTATION VALUES FOR ATOMS
    LI, JM
    ZHAO, QS
    PHYSICA SCRIPTA, 1988, 38 (06): : 793 - 794
  • [10] Vacuum expectation values of quantum fields
    Yu. M. Zinoviev
    Theoretical and Mathematical Physics, 2008, 157 : 1399 - 1419